wangerniu commited on
Commit
60d5d61
·
verified ·
1 Parent(s): ee491da

Upload model

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +26 -0
  3. configuration_resnet.py +35 -0
  4. model.safetensors +3 -0
  5. modeling_resnet.py +54 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ResnetModelForImageClassification"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_resnet.ResnetConfig",
7
+ "AutoModelForImageClassification": "modeling_resnet.ResnetModelForImageClassification"
8
+ },
9
+ "avg_down": true,
10
+ "base_width": 64,
11
+ "block_type": "bottleneck",
12
+ "cardinality": 1,
13
+ "input_channels": 3,
14
+ "layers": [
15
+ 3,
16
+ 4,
17
+ 6,
18
+ 3
19
+ ],
20
+ "model_type": "resnet",
21
+ "num_classes": 1000,
22
+ "stem_type": "deep",
23
+ "stem_width": 32,
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2"
26
+ }
configuration_resnet.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ from typing import List
3
+
4
+
5
+ class ResnetConfig(PretrainedConfig):
6
+ model_type = "resnet"
7
+
8
+ def __init__(
9
+ self,
10
+ block_type="bottleneck",
11
+ layers: List[int] = [3, 4, 6, 3],
12
+ num_classes: int = 1000,
13
+ input_channels: int = 3,
14
+ cardinality: int = 1,
15
+ base_width: int = 64,
16
+ stem_width: int = 64,
17
+ stem_type: str = "",
18
+ avg_down: bool = False,
19
+ **kwargs,
20
+ ):
21
+ if block_type not in ["basic", "bottleneck"]:
22
+ raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.")
23
+ if stem_type not in ["", "deep", "deep-tiered"]:
24
+ raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.")
25
+
26
+ self.block_type = block_type
27
+ self.layers = layers
28
+ self.num_classes = num_classes
29
+ self.input_channels = input_channels
30
+ self.cardinality = cardinality
31
+ self.base_width = base_width
32
+ self.stem_width = stem_width
33
+ self.stem_type = stem_type
34
+ self.avg_down = avg_down
35
+ super().__init__(**kwargs)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78472643c5bb8b9614a3a08d815c1520408058f47e07b26a0e99918c1f7e3176
3
+ size 102550264
modeling_resnet.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import PreTrainedModel
3
+ from timm.models.resnet import BasicBlock, Bottleneck, ResNet
4
+ from .configuration_resnet import ResnetConfig
5
+
6
+
7
+ BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck}
8
+
9
+
10
+ class ResnetModel(PreTrainedModel):
11
+ config_class = ResnetConfig
12
+
13
+ def __init__(self, config):
14
+ super().__init__(config)
15
+ block_layer = BLOCK_MAPPING[config.block_type]
16
+ self.model = ResNet(
17
+ block_layer,
18
+ config.layers,
19
+ num_classes=config.num_classes,
20
+ in_chans=config.input_channels,
21
+ cardinality=config.cardinality,
22
+ base_width=config.base_width,
23
+ stem_width=config.stem_width,
24
+ stem_type=config.stem_type,
25
+ avg_down=config.avg_down,
26
+ )
27
+
28
+ def forward(self, tensor):
29
+ return self.model.forward_features(tensor)
30
+
31
+ class ResnetModelForImageClassification(PreTrainedModel):
32
+ config_class = ResnetConfig
33
+
34
+ def __init__(self, config):
35
+ super().__init__(config)
36
+ block_layer = BLOCK_MAPPING[config.block_type]
37
+ self.model = ResNet(
38
+ block_layer,
39
+ config.layers,
40
+ num_classes=config.num_classes,
41
+ in_chans=config.input_channels,
42
+ cardinality=config.cardinality,
43
+ base_width=config.base_width,
44
+ stem_width=config.stem_width,
45
+ stem_type=config.stem_type,
46
+ avg_down=config.avg_down,
47
+ )
48
+
49
+ def forward(self, tensor, labels=None):
50
+ logits = self.model(tensor)
51
+ if labels is not None:
52
+ loss = torch.nn.functional.cross_entropy(logits, labels)
53
+ return {"loss": loss, "logits": logits}
54
+ return {"logits": logits}