wangerniu commited on
Commit
f8ad943
·
verified ·
1 Parent(s): fd3283e

Upload Calf

Browse files
Files changed (6) hide show
  1. LMConfig.py +62 -0
  2. README.md +199 -0
  3. config.json +84 -0
  4. generation_config.json +4 -0
  5. model.py +482 -0
  6. pytorch_model.bin +3 -0
LMConfig.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ from typing import List
3
+
4
+
5
+ class LMConfig(PretrainedConfig):
6
+ model_type = "minimind"
7
+
8
+ def __init__(
9
+ self,
10
+ dim: int = 768,
11
+ n_layers: int = 16,
12
+ n_heads: int = 16,
13
+ n_kv_heads: int = 8,
14
+ vocab_size: int = 6400,
15
+ hidden_dim: int = None,
16
+ multiple_of: int = 64,
17
+ norm_eps: float = 1e-5,
18
+ max_seq_len: int = 200,
19
+ dropout: float = 0.0,
20
+ flash_attn: bool = True,
21
+ image_special_token: str = '<' * 25 + '>' * 25,
22
+ image_ids=[30] * 25 + [32] * 25,
23
+ ####################################################
24
+ # Here are the specific configurations of MOE
25
+ # When use_moe is false, the following is invalid
26
+ ####################################################
27
+ use_moe: bool = False,
28
+ num_experts_per_tok=2,
29
+ n_routed_experts=4,
30
+ n_shared_experts: bool = True,
31
+ scoring_func='softmax',
32
+ aux_loss_alpha=0.01,
33
+ seq_aux=True,
34
+ norm_topk_prob=True,
35
+ **kwargs,
36
+ ):
37
+ self.dim = dim
38
+ self.n_layers = n_layers
39
+ self.n_heads = n_heads
40
+ self.n_kv_heads = n_kv_heads
41
+ self.vocab_size = vocab_size
42
+ self.hidden_dim = hidden_dim
43
+ self.multiple_of = multiple_of
44
+ self.norm_eps = norm_eps
45
+ self.max_seq_len = max_seq_len
46
+ self.dropout = dropout
47
+ self.flash_attn = flash_attn
48
+ self.image_special_token = image_special_token
49
+ self.image_ids = image_ids
50
+ ####################################################
51
+ # Here are the specific configurations of MOE
52
+ # When use_moe is false, the following is invalid
53
+ ####################################################
54
+ self.use_moe = use_moe
55
+ self.num_experts_per_tok = num_experts_per_tok # 每个token选择的专家数量
56
+ self.n_routed_experts = n_routed_experts # 总的专家数量
57
+ self.n_shared_experts = n_shared_experts # 共享专家
58
+ self.scoring_func = scoring_func # 评分函数,默认为'softmax'
59
+ self.aux_loss_alpha = aux_loss_alpha # 辅助损失的alpha参数
60
+ self.seq_aux = seq_aux # 是否在序列级别上计算辅助损失
61
+ self.norm_topk_prob = norm_topk_prob # 是否标准化top-k概率
62
+ super().__init__(**kwargs)
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Calf"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "LMConfig.LMConfig",
7
+ "AutoModel": "model.Calf"
8
+ },
9
+ "aux_loss_alpha": 0.01,
10
+ "dim": 768,
11
+ "dropout": 0.0,
12
+ "flash_attn": true,
13
+ "hidden_dim": null,
14
+ "image_ids": [
15
+ 30,
16
+ 30,
17
+ 30,
18
+ 30,
19
+ 30,
20
+ 30,
21
+ 30,
22
+ 30,
23
+ 30,
24
+ 30,
25
+ 30,
26
+ 30,
27
+ 30,
28
+ 30,
29
+ 30,
30
+ 30,
31
+ 30,
32
+ 30,
33
+ 30,
34
+ 30,
35
+ 30,
36
+ 30,
37
+ 30,
38
+ 30,
39
+ 30,
40
+ 32,
41
+ 32,
42
+ 32,
43
+ 32,
44
+ 32,
45
+ 32,
46
+ 32,
47
+ 32,
48
+ 32,
49
+ 32,
50
+ 32,
51
+ 32,
52
+ 32,
53
+ 32,
54
+ 32,
55
+ 32,
56
+ 32,
57
+ 32,
58
+ 32,
59
+ 32,
60
+ 32,
61
+ 32,
62
+ 32,
63
+ 32,
64
+ 32
65
+ ],
66
+ "image_special_token": "<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>",
67
+ "max_seq_len": 200,
68
+ "model_type": "minimind",
69
+ "multiple_of": 64,
70
+ "n_heads": 16,
71
+ "n_kv_heads": 8,
72
+ "n_layers": 16,
73
+ "n_routed_experts": 4,
74
+ "n_shared_experts": true,
75
+ "norm_eps": 1e-05,
76
+ "norm_topk_prob": true,
77
+ "num_experts_per_tok": 2,
78
+ "scoring_func": "softmax",
79
+ "seq_aux": true,
80
+ "torch_dtype": "float32",
81
+ "transformers_version": "4.44.2",
82
+ "use_moe": false,
83
+ "vocab_size": 6400
84
+ }
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.44.2"
4
+ }
model.py ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import struct
3
+ import inspect
4
+ import time
5
+
6
+ from .LMConfig import LMConfig
7
+ from typing import Any, Optional, Tuple
8
+ import numpy as np
9
+ import torch
10
+ import torch.nn.functional as F
11
+ from torch import nn
12
+ from transformers import PreTrainedModel
13
+ from transformers.modeling_outputs import CausalLMOutputWithPast
14
+
15
+
16
+ class RMSNorm(torch.nn.Module):
17
+ def __init__(self, dim: int, eps: float):
18
+ super().__init__()
19
+ self.eps = eps
20
+ self.weight = nn.Parameter(torch.ones(dim))
21
+
22
+ def _norm(self, x):
23
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
24
+
25
+ def forward(self, x):
26
+ output = self._norm(x.float()).type_as(x)
27
+ return output * self.weight
28
+
29
+
30
+ def precompute_pos_cis(dim: int, end: int, theta: float = 10000.0):
31
+ freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
32
+ t = torch.arange(end, device=freqs.device) # type: ignore
33
+ freqs = torch.outer(t, freqs).float() # type: ignore
34
+ pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
35
+ return pos_cis
36
+
37
+
38
+ def apply_rotary_emb(xq, xk, pos_cis):
39
+ def unite_shape(pos_cis, x):
40
+ ndim = x.ndim
41
+ assert 0 <= 1 < ndim
42
+ assert pos_cis.shape == (x.shape[1], x.shape[-1])
43
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
44
+ return pos_cis.view(*shape)
45
+
46
+ xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
47
+ xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
48
+ pos_cis = unite_shape(pos_cis, xq_)
49
+ xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3)
50
+ xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
51
+ return xq_out.type_as(xq), xk_out.type_as(xk)
52
+
53
+
54
+ def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
55
+ """torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
56
+ bs, slen, n_kv_heads, head_dim = x.shape
57
+ if n_rep == 1:
58
+ return x
59
+ return (
60
+ x[:, :, :, None, :]
61
+ .expand(bs, slen, n_kv_heads, n_rep, head_dim)
62
+ .reshape(bs, slen, n_kv_heads * n_rep, head_dim)
63
+ )
64
+
65
+
66
+ class Attention(nn.Module):
67
+ def __init__(self, args: LMConfig):
68
+ super().__init__()
69
+ self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
70
+ assert args.n_heads % self.n_kv_heads == 0
71
+ self.n_local_heads = args.n_heads
72
+ self.n_local_kv_heads = self.n_kv_heads
73
+ self.n_rep = self.n_local_heads // self.n_local_kv_heads
74
+ self.head_dim = args.dim // args.n_heads
75
+ self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
76
+ self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
77
+ self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
78
+ self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
79
+ self.k_cache, self.v_cache = None, None
80
+ self.attn_dropout = nn.Dropout(args.dropout)
81
+ self.resid_dropout = nn.Dropout(args.dropout)
82
+ self.dropout = args.dropout
83
+ self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
84
+
85
+ # print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
86
+ mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
87
+ mask = torch.triu(mask, diagonal=1)
88
+ self.register_buffer("mask", mask, persistent=False)
89
+
90
+ def forward(self, x: torch.Tensor, pos_cis: torch.Tensor, kv_cache=False):
91
+ bsz, seqlen, _ = x.shape
92
+
93
+ xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
94
+
95
+ xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
96
+ xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
97
+ xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
98
+
99
+ xq, xk = apply_rotary_emb(xq, xk, pos_cis)
100
+
101
+ # 更高效的kv_cache实现
102
+ if kv_cache and self.eval():
103
+ if seqlen == 1 and all(cache is not None for cache in (self.k_cache, self.v_cache)):
104
+ xk = torch.cat((self.k_cache, xk), dim=1)
105
+ xv = torch.cat((self.v_cache, xv), dim=1)
106
+ self.k_cache, self.v_cache = xk, xv
107
+
108
+ xk = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
109
+ xv = repeat_kv(xv, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
110
+
111
+ xq = xq.transpose(1, 2)
112
+ xk = xk.transpose(1, 2)
113
+ xv = xv.transpose(1, 2)
114
+
115
+ if self.flash and seqlen != 1:
116
+ output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None,
117
+ dropout_p=self.dropout if self.training else 0.0,
118
+ is_causal=True)
119
+ else:
120
+ scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
121
+ scores = scores + self.mask[:, :, :seqlen, :seqlen] # (bs, n_local_heads, seqlen, cache_len + seqlen)
122
+ scores = F.softmax(scores.float(), dim=-1).type_as(xq)
123
+ scores = self.attn_dropout(scores)
124
+ output = torch.matmul(scores, xv) # (bs, n_local_heads, seqlen, head_dim)
125
+
126
+ output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
127
+
128
+ output = self.wo(output)
129
+ output = self.resid_dropout(output)
130
+ return output
131
+
132
+
133
+ class FeedForward(nn.Module):
134
+ def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
135
+ super().__init__()
136
+ if hidden_dim is None:
137
+ hidden_dim = 4 * dim
138
+ hidden_dim = int(2 * hidden_dim / 3)
139
+ hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
140
+ self.w1 = nn.Linear(dim, hidden_dim, bias=False)
141
+ self.w2 = nn.Linear(hidden_dim, dim, bias=False)
142
+ self.w3 = nn.Linear(dim, hidden_dim, bias=False)
143
+ self.dropout = nn.Dropout(dropout)
144
+
145
+ def forward(self, x):
146
+ return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
147
+
148
+
149
+ class MoEGate(nn.Module):
150
+ def __init__(self, config: LMConfig):
151
+ super().__init__()
152
+ self.config = config
153
+ self.top_k = config.num_experts_per_tok
154
+ self.n_routed_experts = config.n_routed_experts
155
+
156
+ self.scoring_func = config.scoring_func
157
+ self.alpha = config.aux_loss_alpha
158
+ self.seq_aux = config.seq_aux
159
+
160
+ self.norm_topk_prob = config.norm_topk_prob
161
+ self.gating_dim = config.dim
162
+ self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
163
+ self.reset_parameters()
164
+
165
+ def reset_parameters(self) -> None:
166
+ import torch.nn.init as init
167
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
168
+
169
+ def forward(self, hidden_states):
170
+ bsz, seq_len, h = hidden_states.shape
171
+
172
+ hidden_states = hidden_states.view(-1, h)
173
+ logits = F.linear(hidden_states, self.weight, None)
174
+ if self.scoring_func == 'softmax':
175
+ scores = logits.softmax(dim=-1)
176
+ else:
177
+ raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
178
+
179
+ topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
180
+
181
+ if self.top_k > 1 and self.norm_topk_prob:
182
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
183
+ topk_weight = topk_weight / denominator
184
+
185
+ if self.training and self.alpha > 0.0:
186
+ scores_for_aux = scores
187
+ aux_topk = self.top_k
188
+ topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
189
+ if self.seq_aux:
190
+ scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
191
+ ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
192
+ ce.scatter_add_(1, topk_idx_for_aux_loss,
193
+ torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(
194
+ seq_len * aux_topk / self.n_routed_experts)
195
+ aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
196
+ else:
197
+ mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
198
+ ce = mask_ce.float().mean(0)
199
+ Pi = scores_for_aux.mean(0)
200
+ fi = ce * self.n_routed_experts
201
+ aux_loss = (Pi * fi).sum() * self.alpha
202
+ else:
203
+ aux_loss = None
204
+ return topk_idx, topk_weight, aux_loss
205
+
206
+
207
+ class MOEFeedForward(nn.Module):
208
+ def __init__(self, config: LMConfig):
209
+ super().__init__()
210
+ self.config = config
211
+ self.experts = nn.ModuleList([
212
+ FeedForward(
213
+ dim=config.dim,
214
+ hidden_dim=config.hidden_dim,
215
+ multiple_of=config.multiple_of,
216
+ dropout=config.dropout,
217
+ )
218
+ for _ in range(config.n_routed_experts)
219
+ ])
220
+
221
+ self.gate = MoEGate(config)
222
+ if config.n_shared_experts is not None:
223
+ self.shared_experts = FeedForward(
224
+ dim=config.dim,
225
+ hidden_dim=config.hidden_dim,
226
+ multiple_of=config.multiple_of,
227
+ dropout=config.dropout,
228
+ )
229
+
230
+ def forward(self, x):
231
+ identity = x
232
+ orig_shape = x.shape
233
+ bsz, seq_len, _ = x.shape
234
+
235
+ # 使用门控机制选择专家
236
+ topk_idx, topk_weight, aux_loss = self.gate(x)
237
+
238
+ x = x.view(-1, x.shape[-1])
239
+ flat_topk_idx = topk_idx.view(-1)
240
+
241
+ if self.training:
242
+ # 训练模式下,重复输入数据
243
+ x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
244
+ y = torch.empty_like(x, dtype=torch.float16)
245
+ for i, expert in enumerate(self.experts):
246
+ y[flat_topk_idx == i] = expert(x[flat_topk_idx == i])
247
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
248
+ y = y.view(*orig_shape)
249
+ else:
250
+ # 推理模式下,只选择最优专家
251
+ y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
252
+
253
+ if self.config.n_shared_experts is not None:
254
+ y = y + self.shared_experts(identity)
255
+
256
+ return y
257
+
258
+ @torch.no_grad()
259
+ def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
260
+ expert_cache = torch.zeros_like(x)
261
+ idxs = flat_expert_indices.argsort()
262
+ tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
263
+ token_idxs = idxs // self.config.num_experts_per_tok
264
+ # 例如当tokens_per_expert=[6, 15, 20, 26, 33, 38, 46, 52]
265
+ # 当token_idxs=[3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...]
266
+ # 意味着当token_idxs[:6] -> [3, 7, 19, 21, 24, 25, 4]位置的token都由专家0处理,token_idxs[6:15]位置的token都由专家1处理......
267
+ for i, end_idx in enumerate(tokens_per_expert):
268
+ start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
269
+ if start_idx == end_idx:
270
+ continue
271
+ expert = self.experts[i]
272
+ exp_token_idx = token_idxs[start_idx:end_idx]
273
+ expert_tokens = x[exp_token_idx]
274
+ expert_out = expert(expert_tokens)
275
+ expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
276
+ # 使用 scatter_add_ 进行 sum 操作
277
+ expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)
278
+
279
+ return expert_cache
280
+
281
+
282
+ class TransformerBlock(nn.Module):
283
+ def __init__(self, layer_id: int, args: LMConfig):
284
+ super().__init__()
285
+ self.n_heads = args.n_heads
286
+ self.dim = args.dim
287
+ self.head_dim = args.dim // args.n_heads
288
+ self.attention = Attention(args)
289
+
290
+ self.layer_id = layer_id
291
+ self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
292
+ self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
293
+
294
+ if args.use_moe:
295
+ self.feed_forward = MOEFeedForward(args)
296
+ else:
297
+ self.feed_forward = FeedForward(
298
+ dim=args.dim,
299
+ hidden_dim=args.hidden_dim,
300
+ multiple_of=args.multiple_of,
301
+ dropout=args.dropout,
302
+ )
303
+
304
+ def forward(self, x, pos_cis, kv_cache=False):
305
+ h = x + self.attention(self.attention_norm(x), pos_cis, kv_cache)
306
+ out = h + self.feed_forward(self.ffn_norm(h))
307
+ return out
308
+
309
+
310
+ class VisionProj(nn.Module):
311
+ def __init__(self, vision_out_dim=768, lm_dim=512, image_ids=[1, 2, 3, 4]):
312
+ super().__init__()
313
+ self.vision_out_dim = vision_out_dim
314
+ self.lm_dim = lm_dim
315
+ self.image_ids = image_ids
316
+ self.vision_proj = nn.Sequential(
317
+ nn.Linear(self.vision_out_dim, self.lm_dim),
318
+ )
319
+
320
+ def forward(self, image_encoders):
321
+ vision_proj = self.vision_proj(image_encoders)
322
+ return vision_proj
323
+
324
+
325
+ class Calf(PreTrainedModel):
326
+ config_class = LMConfig
327
+ last_loss: Optional[torch.Tensor]
328
+
329
+ def __init__(self, params: LMConfig = None):
330
+ super().__init__(params)
331
+ if not params:
332
+ params = LMConfig()
333
+ self.params = params
334
+ self.vocab_size = params.vocab_size
335
+ self.n_layers = params.n_layers
336
+ # image的特殊占位符,对应每张图切分成M个token,和get_img_process中的数量对应
337
+ self.image_ids = params.image_ids
338
+
339
+ self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
340
+ self.dropout = nn.Dropout(params.dropout)
341
+ self.layers = torch.nn.ModuleList()
342
+ for layer_id in range(self.n_layers):
343
+ self.layers.append(TransformerBlock(layer_id, params))
344
+ self.norm = RMSNorm(params.dim, eps=params.norm_eps)
345
+ self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
346
+ self.tok_embeddings.weight = self.output.weight
347
+ pos_cis = precompute_pos_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
348
+ self.register_buffer("pos_cis", pos_cis, persistent=False)
349
+
350
+ self.apply(self._init_weights)
351
+
352
+ for pn, p in self.named_parameters():
353
+ if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
354
+ torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * params.n_layers))
355
+
356
+ self.last_loss = None
357
+ self.OUT = CausalLMOutputWithPast()
358
+ self._no_split_modules = [name for name, _ in self.named_modules()]
359
+
360
+ self.vision_proj = VisionProj(768, params.dim, self.image_ids)
361
+
362
+ def _init_weights(self, module):
363
+ if isinstance(module, nn.Linear):
364
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
365
+ if module.bias is not None:
366
+ torch.nn.init.zeros_(module.bias)
367
+ elif isinstance(module, nn.Embedding):
368
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
369
+
370
+ # VLM
371
+ def count_vision_proj(self, tokens, h, image_encoders=None, seqlen=200):
372
+ # 查找token中<image>片段的索引,为了替换做准备
373
+ def find_indices(tokens, image_ids):
374
+ image_ids_tensor = torch.tensor(image_ids).to(tokens.device)
375
+ return [
376
+ [i, i + len(image_ids) - 1]
377
+ for batch_idx in range(tokens.size(0))
378
+ for i in range(tokens.size(1) - len(image_ids) + 1)
379
+ if torch.equal(tokens[batch_idx, i:i + len(image_ids)], image_ids_tensor)
380
+ ] or None
381
+
382
+ image_indices = find_indices(tokens, self.image_ids)
383
+
384
+ # 如果此时有图像编码
385
+ if image_encoders is not None:
386
+ vision_proj = self.vision_proj(image_encoders)
387
+ if image_indices is not None:
388
+ # 创建一个新的张量来存储拼接后的结果
389
+ new_h = []
390
+ for i in range(h.size(0)):
391
+ before = h[i, :image_indices[i][0], :]
392
+ after = h[i, image_indices[i][1] + 1:, :]
393
+ # 拼接 before, vision_proj, after
394
+ new_h_i = torch.cat((before, vision_proj[i], after), dim=0)[:seqlen]
395
+ new_h.append(new_h_i)
396
+ # 将所有拼接后的结果堆叠起来
397
+ new_h = torch.stack(new_h, dim=0)
398
+ return new_h
399
+
400
+ return h
401
+
402
+ def forward(self, tokens: Optional[torch.Tensor] = None, targets: Optional[torch.Tensor] = None,
403
+ kv_cache=False, image_encoders=None, **keyargs):
404
+ current_idx = 0
405
+ if 'input_ids' in keyargs:
406
+ tokens = keyargs['input_ids']
407
+ if 'attention_mask' in keyargs:
408
+ targets = keyargs['attention_mask']
409
+ if 'current_idx' in keyargs:
410
+ current_idx = int(keyargs['current_idx'])
411
+
412
+ _bsz, seqlen = tokens.shape
413
+ # language proj token
414
+ h = self.tok_embeddings(tokens)
415
+ h = self.dropout(h)
416
+ # vision proj token
417
+ h = self.count_vision_proj(tokens=tokens, h=h, image_encoders=image_encoders, seqlen=seqlen)
418
+
419
+ pos_cis = self.pos_cis[current_idx:current_idx + seqlen]
420
+ for idx, layer in enumerate(self.layers):
421
+ h = layer(h, pos_cis, kv_cache)
422
+
423
+ h = self.norm(h)
424
+
425
+ if targets is not None:
426
+ logits = self.output(h)
427
+ self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=0,
428
+ reduction='none')
429
+ else:
430
+ logits = self.output(h[:, [-1], :])
431
+ self.last_loss = None
432
+
433
+ self.OUT.__setitem__('logits', logits)
434
+ self.OUT.__setitem__('last_loss', self.last_loss)
435
+ return self.OUT
436
+
437
+ @torch.inference_mode()
438
+ def generate(self, idx, eos, max_new_tokens, temperature=0.7, top_k=8, stream=True, rp=1., kv_cache=True,
439
+ image_encoders=None):
440
+ # rp: repetition_penalty
441
+ index = idx.shape[1]
442
+ init_inference = True
443
+ while idx.shape[1] < max_new_tokens - 1:
444
+ if init_inference or not kv_cache:
445
+ inference_res, init_inference = self(idx, kv_cache=kv_cache, image_encoders=image_encoders), False
446
+ else:
447
+ inference_res = self(idx[:, -1:], kv_cache=kv_cache, current_idx=idx.shape[1] - 1)
448
+
449
+ logits = inference_res.logits
450
+ logits = logits[:, -1, :]
451
+
452
+ for token in set(idx.tolist()[0]):
453
+ logits[:, token] /= rp
454
+
455
+ if temperature == 0.0:
456
+ _, idx_next = torch.topk(logits, k=1, dim=-1)
457
+ else:
458
+ logits = logits / temperature
459
+ if top_k is not None:
460
+ v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
461
+ logits[logits < v[:, [-1]]] = -float('Inf')
462
+
463
+ probs = F.softmax(logits, dim=-1)
464
+ idx_next = torch.multinomial(probs, num_samples=1, generator=None)
465
+
466
+ if idx_next == eos:
467
+ break
468
+
469
+ idx = torch.cat((idx, idx_next), dim=1)
470
+ if stream:
471
+ yield idx[:, index:]
472
+
473
+ if not stream:
474
+ yield idx[:, index:]
475
+
476
+ @torch.inference_mode()
477
+ def eval_answer(self, idx):
478
+ idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
479
+ inference_res = self(idx_cond)
480
+ logits = inference_res.logits
481
+ logits = logits[:, -1, :]
482
+ return logits
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ea9a26eb58e36f226abb6ef7b251e4bbfcc3633edfc8a7e1623b3f190e22979
3
+ size 437407386