File size: 7,624 Bytes
bd58a30
962a97b
 
bd58a30
 
962a97b
bd58a30
962a97b
 
 
 
 
 
 
 
bd58a30
 
1ceeecc
d0b3c85
fee4121
abb1fdc
 
 
11a76a5
2c4089b
 
abb1fdc
 
 
 
 
2c4089b
abb1fdc
 
 
2c4089b
 
 
abb1fdc
 
fee4121
 
11a76a5
1ceeecc
 
 
 
 
 
 
 
96d2705
1ceeecc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0b3c85
895dff6
d0b3c85
8dae68f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
datasets:
- medical
language: en
library_name: torch
license: cc-by-sa-4.0
pipeline_tag: image-segmentation
tags:
- medical
- segmentation
- sam
- medical-imaging
- ct
- mri
- ultrasound
---

# MedSAM2: Segment Anything in 3D Medical Images and Videos

<div align="center">
 <table align="center">
   <tr>
     <td><a href="https://arxiv.org/abs/2504.03600" target="_blank"><img src="https://img.shields.io/badge/arXiv-Paper-FF6B6B?style=for-the-badge&logo=arxiv&logoColor=white" alt="Paper"></a></td>
     <td><a href="https://medsam2.github.io/" target="_blank"><img src="https://img.shields.io/badge/Project-Page-4285F4?style=for-the-badge&logoColor=white" alt="Project"></a></td>
     <td><a href="https://github.com/bowang-lab/MedSAM2" target="_blank"><img src="https://img.shields.io/badge/GitHub-Code-181717?style=for-the-badge&logo=github&logoColor=white" alt="Code"></a></td>
     <td><a href="https://huggingface.co/wanglab/MedSAM2" target="_blank"><img src="https://img.shields.io/badge/HuggingFace-Model-FFBF00?style=for-the-badge&logo=huggingface&logoColor=white" alt="HuggingFace Model"></a></td>
   </tr>
   <tr>
     <td><a href="https://medsam-datasetlist.github.io/" target="_blank"><img src="https://img.shields.io/badge/Dataset-List-00B89E?style=for-the-badge" alt="Dataset List"></a></td>
     <td><a href="https://huggingface.co/datasets/wanglab/CT_DeepLesion-MedSAM2" target="_blank"><img src="https://img.shields.io/badge/Dataset-CT__DeepLesion-28A745?style=for-the-badge" alt="CT_DeepLesion-MedSAM2"></a></td>
     <td><a href="https://huggingface.co/datasets/wanglab/LLD-MMRI-MedSAM2" target="_blank"><img src="https://img.shields.io/badge/Dataset-LLD--MMRI-FF6B6B?style=for-the-badge" alt="LLD-MMRI-MedSAM2"></a></td>
     <td><a href="https://github.com/bowang-lab/MedSAMSlicer/tree/MedSAM2" target="_blank"><img src="https://img.shields.io/badge/3D_Slicer-Plugin-e2006a?style=for-the-badge" alt="3D Slicer"></a></td>
   </tr>
   <tr>
     <td><a href="https://github.com/bowang-lab/MedSAM2/blob/main/app.py" target="_blank"><img src="https://img.shields.io/badge/Gradio-Demo-F9D371?style=for-the-badge&logo=gradio&logoColor=white" alt="Gradio App"></a></td>
     <td><a href="https://colab.research.google.com/drive/1MKna9Sg9c78LNcrVyG58cQQmaePZq2k2?usp=sharing" target="_blank"><img src="https://img.shields.io/badge/Colab-CT--Seg--Demo-F9AB00?style=for-the-badge&logo=googlecolab&logoColor=white" alt="CT-Seg-Demo"></a></td>
     <td><a href="https://colab.research.google.com/drive/16niRHqdDZMCGV7lKuagNq_r_CEHtKY1f?usp=sharing" target="_blank"><img src="https://img.shields.io/badge/Colab-Video--Seg--Demo-F9AB00?style=for-the-badge&logo=googlecolab&logoColor=white" alt="Video-Seg-Demo"></a></td>
     <td><a href="https://github.com/bowang-lab/MedSAM2?tab=readme-ov-file#bibtex" target="_blank"><img src="https://img.shields.io/badge/Paper-BibTeX-9370DB?style=for-the-badge&logoColor=white" alt="BibTeX"></a></td>
   </tr>
 </table>
</div>



## Authors

<p align="center">
  <a href="https://scholar.google.com.hk/citations?hl=en&user=bW1UV4IAAAAJ&view_op=list_works&sortby=pubdate">Jun Ma</a><sup>* 1,2</sup>, 
  <a href="https://scholar.google.com/citations?user=8IE0CfwAAAAJ&hl=en">Zongxin Yang</a><sup>* 3</sup>, 
  Sumin Kim<sup>2,4,5</sup>, 
  Bihui Chen<sup>2,4,5</sup>, 
  <a href="https://scholar.google.com.hk/citations?user=U-LgNOwAAAAJ&hl=en&oi=sra">Mohammed Baharoon</a><sup>2,3,5</sup>,<br>
  <a href="https://scholar.google.com.hk/citations?user=4qvKTooAAAAJ&hl=en&oi=sra">Adibvafa Fallahpour</a><sup>2,4,5</sup>, 
  <a href="https://scholar.google.com.hk/citations?user=UlTJ-pAAAAAJ&hl=en&oi=sra">Reza Asakereh</a><sup>4,7</sup>, 
  Hongwei Lyu<sup>4</sup>, 
  <a href="https://wanglab.ai/index.html">Bo Wang</a><sup>† 1,2,4,5,6</sup>
</p>

<p align="center">
  <sup>*</sup> Equal contribution &nbsp;&nbsp;&nbsp; <sup></sup> Corresponding author
</p>

<p align="center">
  <sup>1</sup>AI Collaborative Centre, University Health Network, Toronto, Canada<br>
  <sup>2</sup>Vector Institute for Artificial Intelligence, Toronto, Canada<br>
  <sup>3</sup>Department of Biomedical Informatics, Harvard Medical School, Harvard University, Boston, USA<br>
  <sup>4</sup>Peter Munk Cardiac Centre, University Health Network, Toronto, Canada<br>
  <sup>5</sup>Department of Computer Science, University of Toronto, Toronto, Canada<br>
  <sup>6</sup>Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada<br>
  <sup>7</sup>Roche Canada and Genentech
</p>


## Highlights

- A promptable foundation model for 3D medical image and video segmentation
- Trained on 455,000+ 3D image-mask pairs and 76,000+ annotated video frames
- Versatile segmentation capability across diverse organs and pathologies
- Extensive user studies in large-scale lesion and video datasets demonstrate that MedSAM2 substantially facilitates annotation workflows

## Model Overview
MedSAM2 is a promptable segmentation segmentation model tailored for medical imaging applications. Built upon the foundation of the [Segment Anything Model (SAM) 2.1](https://github.com/facebookresearch/sam2), MedSAM2 has been specifically adapted and fine-tuned for various 3D medical images and videos.

## Available Models

- **MedSAM2_2411.pt**: Base model trained in November 2024
- **MedSAM2_US_Heart.pt**: Fine-tuned model specialized for heart ultrasound video segmentation
- **MedSAM2_MRI_LiverLesion.pt**: Fine-tuned model for liver lesion segmentation in MRI scans
- **MedSAM2_CTLesion.pt**: Fine-tuned model for general lesion segmentation in CT scans
- **MedSAM2_latest.pt** (recommended): Latest version trained on the combination of public datasets and newly annotated medical imaging data

## Downloading Models

### Option 1: Download individual models
You can download the models directly from the Hugging Face repository:

```python
# Using huggingface_hub
from huggingface_hub import hf_hub_download

# Download the recommended latest model
model_path = hf_hub_download(repo_id="wanglab/MedSAM2", filename="MedSAM2_latest.pt")

# Or download a specific fine-tuned model
heart_us_model_path = hf_hub_download(repo_id="wanglab/MedSAM2", filename="MedSAM2_US_Heart.pt")
liver_model_path = hf_hub_download(repo_id="wanglab/MedSAM2", filename="MedSAM2_MRI_LiverLesion.pt")
```

### Option 2: Download all models to a specific folder
```python
from huggingface_hub import hf_hub_download
import os

# Create checkpoints directory if it doesn't exist
os.makedirs("checkpoints", exist_ok=True)

# List of model filenames
model_files = [
    "MedSAM2_2411.pt",
    "MedSAM2_US_Heart.pt",
    "MedSAM2_MRI_LiverLesion.pt",
    "MedSAM2_CTLesion.pt",
    "MedSAM2_latest.pt"
]

# Download all models
for model_file in model_files:
    local_path = os.path.join("checkpoints", model_file)
    hf_hub_download(
        repo_id="wanglab/MedSAM2",
        filename=model_file,
        local_dir="checkpoints",
        local_dir_use_symlinks=False
    )
    print(f"Downloaded {model_file} to {local_path}")
```

Alternatively, you can manually download the models from the [Hugging Face repository page](https://huggingface.co/wanglab/MedSAM2).



## Citations

```
@article{MedSAM2,
    title={MedSAM2: Segment Anything in 3D Medical Images and Videos},
    author={Ma, Jun and Yang, Zongxin and Kim, Sumin and Chen, Bihui and Baharoon, Mohammed and Fallahpour, Adibvafa and Asakereh, Reza and Lyu, Hongwei and Wang, Bo},
    journal={arXiv preprint arXiv:2504.03600},
    year={2025}
}
```

## License

The model weights can only be used for research and education purposes.