File size: 7,614 Bytes
6c404c6
f19e2e7
6c404c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a56940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c404c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a56940
d567409
6c404c6
 
 
 
 
93fa313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c404c6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
from speechbrain.inference.interfaces import Pretrained


class CustomEncoderWav2vec2Classifier(Pretrained):
    """A ready-to-use class for utterance-level classification (e.g, speaker-id,
    language-id, emotion recognition, keyword spotting, etc).

    The class assumes that an self-supervised encoder like wav2vec2/hubert and a classifier model
    are defined in the yaml file. If you want to
    convert the predicted index into a corresponding text label, please
    provide the path of the label_encoder in a variable called 'lab_encoder_file'
    within the yaml.

    The class can be used either to run only the encoder (encode_batch()) to
    extract embeddings or to run a classification step (classify_batch()).
    ```

    Example
    -------
    >>> import torchaudio
    >>> from speechbrain.pretrained import EncoderClassifier
    >>> # Model is downloaded from the speechbrain HuggingFace repo
    >>> tmpdir = getfixture("tmpdir")
    >>> classifier = EncoderClassifier.from_hparams(
    ...     source="speechbrain/spkrec-ecapa-voxceleb",
    ...     savedir=tmpdir,
    ... )

    >>> # Compute embeddings
    >>> signal, fs = torchaudio.load("samples/audio_samples/example1.wav")
    >>> embeddings =  classifier.encode_batch(signal)

    >>> # Classification
    >>> prediction =  classifier .classify_batch(signal)
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def encode_batch(self, wavs, wav_lens=None, normalize=False):
        """Encodes the input audio into a single vector embedding.

        The waveforms should already be in the model's desired format.
        You can call:
        ``normalized = <this>.normalizer(signal, sample_rate)``
        to get a correctly converted signal in most cases.

        Arguments
        ---------
        wavs : torch.tensor
            Batch of waveforms [batch, time, channels] or [batch, time]
            depending on the model. Make sure the sample rate is fs=16000 Hz.
        wav_lens : torch.tensor
            Lengths of the waveforms relative to the longest one in the
            batch, tensor of shape [batch]. The longest one should have
            relative length 1.0 and others len(waveform) / max_length.
            Used for ignoring padding.
        normalize : bool
            If True, it normalizes the embeddings with the statistics
            contained in mean_var_norm_emb.

        Returns
        -------
        torch.tensor
            The encoded batch
        """
        # Manage single waveforms in input
        if len(wavs.shape) == 1:
            wavs = wavs.unsqueeze(0)

        # Assign full length if wav_lens is not assigned
        if wav_lens is None:
            wav_lens = torch.ones(wavs.shape[0], device=self.device)

        # Storing waveform in the specified device
        wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
        wavs = wavs.float()

        # Computing features and embeddings
        outputs = self.mods.wav2vec2(wavs)

        # last dim will be used for AdaptativeAVG pool
        outputs = self.mods.avg_pool(outputs, wav_lens)
        outputs = outputs.view(outputs.shape[0], -1)
        return outputs

    def classify_batch(self, wavs, wav_lens=None):
        """Performs classification on the top of the encoded features.

        It returns the posterior probabilities, the index and, if the label
        encoder is specified it also the text label.

        Arguments
        ---------
        wavs : torch.tensor
            Batch of waveforms [batch, time, channels] or [batch, time]
            depending on the model. Make sure the sample rate is fs=16000 Hz.
        wav_lens : torch.tensor
            Lengths of the waveforms relative to the longest one in the
            batch, tensor of shape [batch]. The longest one should have
            relative length 1.0 and others len(waveform) / max_length.
            Used for ignoring padding.

        Returns
        -------
        out_prob
            The log posterior probabilities of each class ([batch, N_class])
        score:
            It is the value of the log-posterior for the best class ([batch,])
        index
            The indexes of the best class ([batch,])
        text_lab:
            List with the text labels corresponding to the indexes.
            (label encoder should be provided).
        """
        outputs = self.encode_batch(wavs, wav_lens)
        outputs = self.mods.output_mlp(outputs)
        out_prob = self.hparams.softmax(outputs)
        score, index = torch.max(out_prob, dim=-1)
        text_lab = self.hparams.label_encoder.decode_torch(index)
        return out_prob, score, index, text_lab

    def embed_file(self, path):
        """Returns embedding (last layer output) for the given audiofile.

        Arguments
        ---------
        path : str
            Path to audio file to classify.

        Returns
        -------
        embed
            The log posterior probabilities of each class ([batch, embed_dim])
        """
        waveform = self.load_audio(path)
        # Fake a batch:
        batch = waveform.unsqueeze(0)
        rel_length = torch.tensor([1.0])
        outputs = self.encode_batch(batch, rel_length)
        return outputs
        

    def classify_file(self, path):
        """Classifies the given audiofile into the given set of labels.

        Arguments
        ---------
        path : str
            Path to audio file to classify.

        Returns
        -------
        out_prob
            The log posterior probabilities of each class ([batch, N_class])
        score:
            It is the value of the log-posterior for the best class ([batch,])
        index
            The indexes of the best class ([batch,])
        text_lab:
            List with the text labels corresponding to the indexes.
            (label encoder should be provided).
        """
        outputs = self.embed_file(path)
        outputs = self.mods.output_mlp(outputs).squeeze(1)
        out_prob = self.hparams.softmax(outputs)
        score, index = torch.max(out_prob, dim=-1)
        text_lab = self.hparams.label_encoder.decode_torch(index)
        return out_prob, score, index, text_lab

    def classify_sample(self, sample, sr):
        """Classifies the given audio sample into the given set of labels.

        Arguments
        ---------
        sample : torch tensor
            wav tensor. ([T, 1])
        sr: int 
            sampling rate.

        Returns
        -------
        out_prob
            The log posterior probabilities of each class ([batch, N_class])
        score:
            It is the value of the log-posterior for the best class ([batch,])
        index
            The indexes of the best class ([batch,])
        text_lab:
            List with the text labels corresponding to the indexes.
            (label encoder should be provided).
        """
        # Fake a batch:
        waveform = self.audio_normalizer(sample, sr)
        batch = waveform.unsqueeze(0) 
        rel_length = torch.tensor([1.0])
        outputs = self.encode_batch(batch, rel_length)
        outputs = self.mods.output_mlp(outputs).squeeze(1)
        out_prob = self.hparams.softmax(outputs)
        score, index = torch.max(out_prob, dim=-1)
        text_lab = self.hparams.label_encoder.decode_torch(index)
        return out_prob, score, index, text_lab

    def forward(self, wavs, wav_lens=None, normalize=False):
        return self.encode_batch(
            wavs=wavs, wav_lens=wav_lens, normalize=normalize
        )