File size: 2,149 Bytes
f4baa9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
language:
- mn
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Large MN - Ankhbayasgalan Davaadorj
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 16.1 & FLEURS
      type: mozilla-foundation/common_voice_16_1
      config: mn
      split: None
      args: 'config: mn, split: test+validation'
    metrics:
    - name: Wer
      type: wer
      value: 33.65601452065343
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Large MN - Ankhbayasgalan Davaadorj

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common Voice 16.1 & FLEURS dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4942
- Wer: 33.6560

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0361        | 5.99  | 1000 | 0.3833          | 42.0109 |
| 0.0016        | 11.98 | 2000 | 0.4445          | 37.2092 |
| 0.0002        | 17.96 | 3000 | 0.4784          | 34.0410 |
| 0.0001        | 23.95 | 4000 | 0.4942          | 33.6560 |


### Framework versions

- Transformers 4.37.2
- Pytorch 1.12.1+cu116
- Datasets 2.17.0
- Tokenizers 0.15.2