# Usage # Model loading ```python import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss from transformers import LlamaPreTrainedModel,LlamaModel,Gemma2PreTrainedModel,Gemma2Model,Cache from transformers.modeling_outputs import SequenceClassifierOutputWithPast from typing import Optional, List, Union, Tuple @dataclass class Config: gemma_dir = '/kaggle/input/v7-dpo-16bit-01234-8bit-all/v7_dpo_16bit_01234_8bit_all' max_length = 2000 batch_size = 8 device = torch.device("cuda") if torch.cuda_is_available() else torch.device("cpu") cfg = Config() class Gemma2ForSequenceClassificationV1(Gemma2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Gemma2Model(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] # logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(hidden_states.device) else: sequence_lengths = -1 hidden_states = hidden_states[ torch.arange(batch_size, device=hidden_states.device), sequence_lengths] # eos pooled_logits = self.score(hidden_states) return pooled_logits tokenizer = GemmaTokenizerFast.from_pretrained(cfg.gemma_dir) model = Gemma2ForSequenceClassificationV1.from_pretrained( cfg.gemma_dir, num_labels=3, device_map=cfg.device, use_cache=False, ) model.config.pad_token_id = tokenizer.pad_token_id ``` # Inference ```python def create_rounds(query: str, answer_a: str, answer_b: str) -> str: prompt =f"""User question: \"""{query}\""" Answer A: \"""{answer_a}\""" Answer B: \"""{answer_b}\""" """ return prompt @torch.no_grad() @torch.cuda.amp.autocast() def single_prompt_inference(prompt, model, device, max_length=cfg.max_length): """ Perform inference on a single prompt. Args: prompt (str): The input prompt for inference. model (torch.nn.Module): The model used for inference. device (torch.device): The device to run inference on. tokenizer (Tokenizer): Tokenizer for preprocessing input text. max_length (int): Maximum sequence length for tokenization. Returns: dict: Probabilities for "a_win", "b_win", and "tie". """ # Tokenize the input prompt input_ids = tokenizer(prompt, truncation=True, max_length=max_length)['input_ids'] input_ids.append(tokenizer.eos_token_id) # Prepare inputs inputs = pad_without_fast_tokenizer_warning( tokenizer, {"input_ids": [input_ids]}, # Wrap in a list for compatibility padding="max_length", pad_to_multiple_of=None, max_length=max_length, return_tensors="pt", ) # Move inputs to the appropriate device inputs = inputs.to(cfg.device) # Run the model outputs = model(**inputs) # Get probabilities using softmax proba = outputs.softmax(-1).cpu().squeeze() return { "winner_model_a": proba[0].item(), "winner_model_b": proba[1].item(), "tie": proba[2].item(), } query = "What is the height of the reassembled blind product?" answer_a = "You can find all the technical information directly on the product sheet on our site." answer_b = "The height of the aluminum Venetian blind is 130 cm." prompt_direct = create_rounds(query, answer_a, answer_b) single_prompt_inference(prompt_direct, model, device) ``` Credits to @sayoulala on kaggle for winnig the competition https://www.kaggle.com/competitions/lmsys-chatbot-arena and submitting this model.