wazzywazzywazzy
commited on
Commit
·
ae3e0fb
1
Parent(s):
9a1bb9f
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: layoutlmv3-finetuned-invoice-2
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# layoutlmv3-finetuned-invoice-2
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1396
|
23 |
+
- Precision: 0.7576
|
24 |
+
- Recall: 0.8929
|
25 |
+
- F1: 0.8197
|
26 |
+
- Accuracy: 0.9742
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 1e-05
|
46 |
+
- train_batch_size: 2
|
47 |
+
- eval_batch_size: 2
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- training_steps: 2000
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 4.35 | 100 | 0.4241 | 0.0 | 0.0 | 0.0 | 0.9135 |
|
58 |
+
| No log | 8.7 | 200 | 0.2990 | 0.2353 | 0.1429 | 0.1778 | 0.9239 |
|
59 |
+
| No log | 13.04 | 300 | 0.3107 | 0.5263 | 0.3571 | 0.4255 | 0.9458 |
|
60 |
+
| No log | 17.39 | 400 | 0.1345 | 0.6970 | 0.8214 | 0.7541 | 0.9742 |
|
61 |
+
| 0.2872 | 21.74 | 500 | 0.1396 | 0.7576 | 0.8929 | 0.8197 | 0.9742 |
|
62 |
+
| 0.2872 | 26.09 | 600 | 0.1673 | 0.8519 | 0.8214 | 0.8364 | 0.9690 |
|
63 |
+
| 0.2872 | 30.43 | 700 | 0.1784 | 0.8519 | 0.8214 | 0.8364 | 0.9690 |
|
64 |
+
| 0.2872 | 34.78 | 800 | 0.1401 | 0.7742 | 0.8571 | 0.8136 | 0.9729 |
|
65 |
+
| 0.2872 | 39.13 | 900 | 0.1480 | 0.7273 | 0.8571 | 0.7869 | 0.9716 |
|
66 |
+
| 0.0443 | 43.48 | 1000 | 0.1739 | 0.6970 | 0.8214 | 0.7541 | 0.9703 |
|
67 |
+
| 0.0443 | 47.83 | 1100 | 0.1786 | 0.7097 | 0.7857 | 0.7458 | 0.9690 |
|
68 |
+
| 0.0443 | 52.17 | 1200 | 0.1832 | 0.6970 | 0.8214 | 0.7541 | 0.9690 |
|
69 |
+
| 0.0443 | 56.52 | 1300 | 0.1861 | 0.6389 | 0.8214 | 0.7187 | 0.9690 |
|
70 |
+
| 0.0443 | 60.87 | 1400 | 0.2155 | 0.6667 | 0.7143 | 0.6897 | 0.9639 |
|
71 |
+
| 0.0198 | 65.22 | 1500 | 0.2087 | 0.6667 | 0.7143 | 0.6897 | 0.9652 |
|
72 |
+
| 0.0198 | 69.57 | 1600 | 0.1680 | 0.6970 | 0.8214 | 0.7541 | 0.9703 |
|
73 |
+
| 0.0198 | 73.91 | 1700 | 0.1664 | 0.6970 | 0.8214 | 0.7541 | 0.9703 |
|
74 |
+
| 0.0198 | 78.26 | 1800 | 0.1795 | 0.6970 | 0.8214 | 0.7541 | 0.9703 |
|
75 |
+
| 0.0198 | 82.61 | 1900 | 0.1807 | 0.6970 | 0.8214 | 0.7541 | 0.9703 |
|
76 |
+
| 0.0151 | 86.96 | 2000 | 0.1825 | 0.6970 | 0.8214 | 0.7541 | 0.9703 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.27.4
|
82 |
+
- Pytorch 2.0.0+cu117
|
83 |
+
- Datasets 2.11.0
|
84 |
+
- Tokenizers 0.13.3
|