wazzywazzywazzy commited on
Commit
ae3e0fb
·
1 Parent(s): 9a1bb9f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: layoutlmv3-finetuned-invoice-2
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # layoutlmv3-finetuned-invoice-2
19
+
20
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1396
23
+ - Precision: 0.7576
24
+ - Recall: 0.8929
25
+ - F1: 0.8197
26
+ - Accuracy: 0.9742
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 1e-05
46
+ - train_batch_size: 2
47
+ - eval_batch_size: 2
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - training_steps: 2000
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 4.35 | 100 | 0.4241 | 0.0 | 0.0 | 0.0 | 0.9135 |
58
+ | No log | 8.7 | 200 | 0.2990 | 0.2353 | 0.1429 | 0.1778 | 0.9239 |
59
+ | No log | 13.04 | 300 | 0.3107 | 0.5263 | 0.3571 | 0.4255 | 0.9458 |
60
+ | No log | 17.39 | 400 | 0.1345 | 0.6970 | 0.8214 | 0.7541 | 0.9742 |
61
+ | 0.2872 | 21.74 | 500 | 0.1396 | 0.7576 | 0.8929 | 0.8197 | 0.9742 |
62
+ | 0.2872 | 26.09 | 600 | 0.1673 | 0.8519 | 0.8214 | 0.8364 | 0.9690 |
63
+ | 0.2872 | 30.43 | 700 | 0.1784 | 0.8519 | 0.8214 | 0.8364 | 0.9690 |
64
+ | 0.2872 | 34.78 | 800 | 0.1401 | 0.7742 | 0.8571 | 0.8136 | 0.9729 |
65
+ | 0.2872 | 39.13 | 900 | 0.1480 | 0.7273 | 0.8571 | 0.7869 | 0.9716 |
66
+ | 0.0443 | 43.48 | 1000 | 0.1739 | 0.6970 | 0.8214 | 0.7541 | 0.9703 |
67
+ | 0.0443 | 47.83 | 1100 | 0.1786 | 0.7097 | 0.7857 | 0.7458 | 0.9690 |
68
+ | 0.0443 | 52.17 | 1200 | 0.1832 | 0.6970 | 0.8214 | 0.7541 | 0.9690 |
69
+ | 0.0443 | 56.52 | 1300 | 0.1861 | 0.6389 | 0.8214 | 0.7187 | 0.9690 |
70
+ | 0.0443 | 60.87 | 1400 | 0.2155 | 0.6667 | 0.7143 | 0.6897 | 0.9639 |
71
+ | 0.0198 | 65.22 | 1500 | 0.2087 | 0.6667 | 0.7143 | 0.6897 | 0.9652 |
72
+ | 0.0198 | 69.57 | 1600 | 0.1680 | 0.6970 | 0.8214 | 0.7541 | 0.9703 |
73
+ | 0.0198 | 73.91 | 1700 | 0.1664 | 0.6970 | 0.8214 | 0.7541 | 0.9703 |
74
+ | 0.0198 | 78.26 | 1800 | 0.1795 | 0.6970 | 0.8214 | 0.7541 | 0.9703 |
75
+ | 0.0198 | 82.61 | 1900 | 0.1807 | 0.6970 | 0.8214 | 0.7541 | 0.9703 |
76
+ | 0.0151 | 86.96 | 2000 | 0.1825 | 0.6970 | 0.8214 | 0.7541 | 0.9703 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.27.4
82
+ - Pytorch 2.0.0+cu117
83
+ - Datasets 2.11.0
84
+ - Tokenizers 0.13.3