wbbbbb commited on
Commit
3267f70
·
1 Parent(s): d3d1d96

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +167 -0
README.md CHANGED
@@ -1,3 +1,170 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: zh
3
+ datasets:
4
+ - common_voice
5
+ metrics:
6
+ - wer
7
+ - cer
8
+ tags:
9
+ - audio
10
+ - automatic-speech-recognition
11
+ - speech
12
+ - xlsr-fine-tuning-week
13
  license: apache-2.0
14
+ model-index:
15
+ - name: XLSR Wav2Vec2 Chinese (zh-CN) by Jonatas Grosman
16
+ results:
17
+ - task:
18
+ name: Speech Recognition
19
+ type: automatic-speech-recognition
20
+ dataset:
21
+ name: Common Voice zh-CN
22
+ type: common_voice
23
+ args: zh-CN
24
+ metrics:
25
+ - name: Test WER
26
+ type: wer
27
+ value: 82.37
28
+ - name: Test CER
29
+ type: cer
30
+ value: 19.03
31
  ---
32
+ # Fine-tuned XLSR-53 large model for speech recognition in Chinese
33
+
34
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chinese using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice), [CSS10](https://github.com/Kyubyong/css10) and [ST-CMDS](http://www.openslr.org/38/).
35
+ When using this model, make sure that your speech input is sampled at 16kHz.
36
+
37
+ This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
38
+
39
+ The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
40
+
41
+ ## Usage
42
+
43
+ The model can be used directly (without a language model) as follows...
44
+
45
+ Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:
46
+
47
+ ```python
48
+ from huggingsound import SpeechRecognitionModel
49
+ model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn")
50
+ audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
51
+ transcriptions = model.transcribe(audio_paths)
52
+ ```
53
+
54
+ Writing your own inference script:
55
+
56
+ ```python
57
+ import torch
58
+ import librosa
59
+ from datasets import load_dataset
60
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
61
+ LANG_ID = "zh-CN"
62
+ MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn"
63
+ SAMPLES = 10
64
+ test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
65
+ processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
66
+ model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
67
+ # Preprocessing the datasets.
68
+ # We need to read the audio files as arrays
69
+ def speech_file_to_array_fn(batch):
70
+ speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
71
+ batch["speech"] = speech_array
72
+ batch["sentence"] = batch["sentence"].upper()
73
+ return batch
74
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
75
+ inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
76
+ with torch.no_grad():
77
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
78
+ predicted_ids = torch.argmax(logits, dim=-1)
79
+ predicted_sentences = processor.batch_decode(predicted_ids)
80
+ for i, predicted_sentence in enumerate(predicted_sentences):
81
+ print("-" * 100)
82
+ print("Reference:", test_dataset[i]["sentence"])
83
+ print("Prediction:", predicted_sentence)
84
+ ```
85
+
86
+ | Reference | Prediction |
87
+ | ------------- | ------------- |
88
+ | 宋朝末年年间定居粉岭围。 | 宋朝末年年间定居分定为 |
89
+ | 渐渐行动不便 | 建境行动不片 |
90
+ | 二十一年去世。 | 二十一年去世 |
91
+ | 他们自称恰哈拉。 | 他们自称家哈<unk> |
92
+ | 局部干涩的例子包括有口干、眼睛干燥、及阴道干燥。 | 菊物干寺的例子包括有口肝眼睛干照以及阴到干<unk> |
93
+ | 嘉靖三十八年,登进士第三甲第二名。 | 嘉靖三十八年登进士第三甲第二名 |
94
+ | 这一名称一直沿用至今。 | 这一名称一直沿用是心 |
95
+ | 同时乔凡尼还得到包税合同和许多明矾矿的经营权。 | 同时桥凡妮还得到包税合同和许多民繁矿的经营权 |
96
+ | 为了惩罚西扎城和塞尔柱的结盟,盟军在抵达后将外城烧毁。 | 为了曾罚西扎城和塞尔素的节盟盟军在抵达后将外曾烧毁 |
97
+ | 河内盛产黄色无鱼鳞的鳍射鱼。 | 合类生场环色无鱼林的骑射鱼 |
98
+
99
+ ## Evaluation
100
+
101
+ The model can be evaluated as follows on the Chinese (zh-CN) test data of Common Voice.
102
+
103
+ ```python
104
+ import torch
105
+ import re
106
+ import librosa
107
+ from datasets import load_dataset, load_metric
108
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
109
+ LANG_ID = "zh-CN"
110
+ MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn"
111
+ DEVICE = "cuda"
112
+ CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
113
+ "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
114
+ "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
115
+ "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
116
+ "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"]
117
+ test_dataset = load_dataset("common_voice", LANG_ID, split="test")
118
+ wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
119
+ cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
120
+ chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
121
+ processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
122
+ model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
123
+ model.to(DEVICE)
124
+ # Preprocessing the datasets.
125
+ # We need to read the audio files as arrays
126
+ def speech_file_to_array_fn(batch):
127
+ with warnings.catch_warnings():
128
+ warnings.simplefilter("ignore")
129
+ speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
130
+ batch["speech"] = speech_array
131
+ batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
132
+ return batch
133
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
134
+ # Preprocessing the datasets.
135
+ # We need to read the audio files as arrays
136
+ def evaluate(batch):
137
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
138
+ with torch.no_grad():
139
+ logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
140
+ pred_ids = torch.argmax(logits, dim=-1)
141
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
142
+ return batch
143
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
144
+ predictions = [x.upper() for x in result["pred_strings"]]
145
+ references = [x.upper() for x in result["sentence"]]
146
+ print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
147
+ print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
148
+ ```
149
+
150
+ **Test Result**:
151
+
152
+ In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-13). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.
153
+
154
+ | Model | WER | CER |
155
+ | ------------- | ------------- | ------------- |
156
+ | jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn | **82.37%** | **19.03%** |
157
+ | ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt | 84.01% | 20.95% |
158
+
159
+
160
+ ## Citation
161
+ If you want to cite this model you can use this:
162
+
163
+ ```bibtex
164
+ @misc{grosman2021xlsr53-large-chinese,
165
+ title={Fine-tuned {XLSR}-53 large model for speech recognition in {C}hinese},
166
+ author={Grosman, Jonatas},
167
+ howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn}},
168
+ year={2021}
169
+ }
170
+ ```