wcosmas commited on
Commit
7ed117d
1 Parent(s): 5eec390

Model save

Browse files
Files changed (2) hide show
  1. README.md +125 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: microsoft/resnet-18
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - imagefolder
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: resnet-18-finetuned-papsmear
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: imagefolder
19
+ type: imagefolder
20
+ config: default
21
+ split: train
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.8897058823529411
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # resnet-18-finetuned-papsmear
33
+
34
+ This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.2861
37
+ - Accuracy: 0.8897
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 32
58
+ - eval_batch_size: 32
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 4
61
+ - total_train_batch_size: 128
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 50
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|
71
+ | No log | 0.9231 | 9 | 1.9256 | 0.1691 |
72
+ | 1.9692 | 1.9487 | 19 | 1.6557 | 0.2868 |
73
+ | 1.7979 | 2.9744 | 29 | 1.3300 | 0.5368 |
74
+ | 1.5079 | 4.0 | 39 | 1.0482 | 0.6324 |
75
+ | 1.217 | 4.9231 | 48 | 0.9019 | 0.6618 |
76
+ | 0.9536 | 5.9487 | 58 | 0.7687 | 0.6691 |
77
+ | 0.7881 | 6.9744 | 68 | 0.6150 | 0.7721 |
78
+ | 0.68 | 8.0 | 78 | 0.5481 | 0.7868 |
79
+ | 0.5678 | 8.9231 | 87 | 0.5341 | 0.7868 |
80
+ | 0.5169 | 9.9487 | 97 | 0.4800 | 0.7941 |
81
+ | 0.4838 | 10.9744 | 107 | 0.4356 | 0.8235 |
82
+ | 0.4738 | 12.0 | 117 | 0.4573 | 0.8162 |
83
+ | 0.3798 | 12.9231 | 126 | 0.4263 | 0.8088 |
84
+ | 0.3431 | 13.9487 | 136 | 0.4159 | 0.8382 |
85
+ | 0.3282 | 14.9744 | 146 | 0.3787 | 0.8603 |
86
+ | 0.3167 | 16.0 | 156 | 0.4234 | 0.8382 |
87
+ | 0.3186 | 16.9231 | 165 | 0.3853 | 0.8235 |
88
+ | 0.2568 | 17.9487 | 175 | 0.3904 | 0.8456 |
89
+ | 0.2528 | 18.9744 | 185 | 0.4013 | 0.8309 |
90
+ | 0.2661 | 20.0 | 195 | 0.3275 | 0.8824 |
91
+ | 0.2287 | 20.9231 | 204 | 0.3219 | 0.8824 |
92
+ | 0.2465 | 21.9487 | 214 | 0.3410 | 0.8529 |
93
+ | 0.2422 | 22.9744 | 224 | 0.3256 | 0.8603 |
94
+ | 0.222 | 24.0 | 234 | 0.3232 | 0.875 |
95
+ | 0.1917 | 24.9231 | 243 | 0.3307 | 0.8676 |
96
+ | 0.194 | 25.9487 | 253 | 0.3146 | 0.8971 |
97
+ | 0.212 | 26.9744 | 263 | 0.3125 | 0.8897 |
98
+ | 0.1718 | 28.0 | 273 | 0.3015 | 0.9044 |
99
+ | 0.1975 | 28.9231 | 282 | 0.3195 | 0.8824 |
100
+ | 0.1948 | 29.9487 | 292 | 0.3536 | 0.8971 |
101
+ | 0.1809 | 30.9744 | 302 | 0.3105 | 0.875 |
102
+ | 0.1744 | 32.0 | 312 | 0.3032 | 0.8824 |
103
+ | 0.1731 | 32.9231 | 321 | 0.2936 | 0.8971 |
104
+ | 0.1513 | 33.9487 | 331 | 0.2889 | 0.8824 |
105
+ | 0.1527 | 34.9744 | 341 | 0.2875 | 0.8897 |
106
+ | 0.1693 | 36.0 | 351 | 0.2754 | 0.8897 |
107
+ | 0.1743 | 36.9231 | 360 | 0.2875 | 0.8971 |
108
+ | 0.1463 | 37.9487 | 370 | 0.2961 | 0.8971 |
109
+ | 0.1429 | 38.9744 | 380 | 0.2848 | 0.8971 |
110
+ | 0.1483 | 40.0 | 390 | 0.2873 | 0.8897 |
111
+ | 0.1483 | 40.9231 | 399 | 0.2856 | 0.875 |
112
+ | 0.1613 | 41.9487 | 409 | 0.2801 | 0.8971 |
113
+ | 0.1358 | 42.9744 | 419 | 0.2838 | 0.9118 |
114
+ | 0.1453 | 44.0 | 429 | 0.2783 | 0.8971 |
115
+ | 0.1383 | 44.9231 | 438 | 0.2897 | 0.8897 |
116
+ | 0.1655 | 45.9487 | 448 | 0.2847 | 0.9044 |
117
+ | 0.1489 | 46.1538 | 450 | 0.2861 | 0.8897 |
118
+
119
+
120
+ ### Framework versions
121
+
122
+ - Transformers 4.44.2
123
+ - Pytorch 2.4.1+cu121
124
+ - Datasets 3.0.1
125
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:217bfb2f595afe613a5dc71cbbef6aa77dec2172d8f7150890a3fa8b12fb699c
3
  size 44772544
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce051ed4ec1ee80d4b26666367cd99e4cfe9a67fa9883ed6ae39c0a518411f58
3
  size 44772544