Model save
Browse files- README.md +125 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: microsoft/resnet-18
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- imagefolder
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: resnet-18-finetuned-papsmear
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Image Classification
|
16 |
+
type: image-classification
|
17 |
+
dataset:
|
18 |
+
name: imagefolder
|
19 |
+
type: imagefolder
|
20 |
+
config: default
|
21 |
+
split: train
|
22 |
+
args: default
|
23 |
+
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.8897058823529411
|
27 |
+
---
|
28 |
+
|
29 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
+
should probably proofread and complete it, then remove this comment. -->
|
31 |
+
|
32 |
+
# resnet-18-finetuned-papsmear
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.2861
|
37 |
+
- Accuracy: 0.8897
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 5e-05
|
57 |
+
- train_batch_size: 32
|
58 |
+
- eval_batch_size: 32
|
59 |
+
- seed: 42
|
60 |
+
- gradient_accumulation_steps: 4
|
61 |
+
- total_train_batch_size: 128
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- lr_scheduler_warmup_ratio: 0.1
|
65 |
+
- num_epochs: 50
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
71 |
+
| No log | 0.9231 | 9 | 1.9256 | 0.1691 |
|
72 |
+
| 1.9692 | 1.9487 | 19 | 1.6557 | 0.2868 |
|
73 |
+
| 1.7979 | 2.9744 | 29 | 1.3300 | 0.5368 |
|
74 |
+
| 1.5079 | 4.0 | 39 | 1.0482 | 0.6324 |
|
75 |
+
| 1.217 | 4.9231 | 48 | 0.9019 | 0.6618 |
|
76 |
+
| 0.9536 | 5.9487 | 58 | 0.7687 | 0.6691 |
|
77 |
+
| 0.7881 | 6.9744 | 68 | 0.6150 | 0.7721 |
|
78 |
+
| 0.68 | 8.0 | 78 | 0.5481 | 0.7868 |
|
79 |
+
| 0.5678 | 8.9231 | 87 | 0.5341 | 0.7868 |
|
80 |
+
| 0.5169 | 9.9487 | 97 | 0.4800 | 0.7941 |
|
81 |
+
| 0.4838 | 10.9744 | 107 | 0.4356 | 0.8235 |
|
82 |
+
| 0.4738 | 12.0 | 117 | 0.4573 | 0.8162 |
|
83 |
+
| 0.3798 | 12.9231 | 126 | 0.4263 | 0.8088 |
|
84 |
+
| 0.3431 | 13.9487 | 136 | 0.4159 | 0.8382 |
|
85 |
+
| 0.3282 | 14.9744 | 146 | 0.3787 | 0.8603 |
|
86 |
+
| 0.3167 | 16.0 | 156 | 0.4234 | 0.8382 |
|
87 |
+
| 0.3186 | 16.9231 | 165 | 0.3853 | 0.8235 |
|
88 |
+
| 0.2568 | 17.9487 | 175 | 0.3904 | 0.8456 |
|
89 |
+
| 0.2528 | 18.9744 | 185 | 0.4013 | 0.8309 |
|
90 |
+
| 0.2661 | 20.0 | 195 | 0.3275 | 0.8824 |
|
91 |
+
| 0.2287 | 20.9231 | 204 | 0.3219 | 0.8824 |
|
92 |
+
| 0.2465 | 21.9487 | 214 | 0.3410 | 0.8529 |
|
93 |
+
| 0.2422 | 22.9744 | 224 | 0.3256 | 0.8603 |
|
94 |
+
| 0.222 | 24.0 | 234 | 0.3232 | 0.875 |
|
95 |
+
| 0.1917 | 24.9231 | 243 | 0.3307 | 0.8676 |
|
96 |
+
| 0.194 | 25.9487 | 253 | 0.3146 | 0.8971 |
|
97 |
+
| 0.212 | 26.9744 | 263 | 0.3125 | 0.8897 |
|
98 |
+
| 0.1718 | 28.0 | 273 | 0.3015 | 0.9044 |
|
99 |
+
| 0.1975 | 28.9231 | 282 | 0.3195 | 0.8824 |
|
100 |
+
| 0.1948 | 29.9487 | 292 | 0.3536 | 0.8971 |
|
101 |
+
| 0.1809 | 30.9744 | 302 | 0.3105 | 0.875 |
|
102 |
+
| 0.1744 | 32.0 | 312 | 0.3032 | 0.8824 |
|
103 |
+
| 0.1731 | 32.9231 | 321 | 0.2936 | 0.8971 |
|
104 |
+
| 0.1513 | 33.9487 | 331 | 0.2889 | 0.8824 |
|
105 |
+
| 0.1527 | 34.9744 | 341 | 0.2875 | 0.8897 |
|
106 |
+
| 0.1693 | 36.0 | 351 | 0.2754 | 0.8897 |
|
107 |
+
| 0.1743 | 36.9231 | 360 | 0.2875 | 0.8971 |
|
108 |
+
| 0.1463 | 37.9487 | 370 | 0.2961 | 0.8971 |
|
109 |
+
| 0.1429 | 38.9744 | 380 | 0.2848 | 0.8971 |
|
110 |
+
| 0.1483 | 40.0 | 390 | 0.2873 | 0.8897 |
|
111 |
+
| 0.1483 | 40.9231 | 399 | 0.2856 | 0.875 |
|
112 |
+
| 0.1613 | 41.9487 | 409 | 0.2801 | 0.8971 |
|
113 |
+
| 0.1358 | 42.9744 | 419 | 0.2838 | 0.9118 |
|
114 |
+
| 0.1453 | 44.0 | 429 | 0.2783 | 0.8971 |
|
115 |
+
| 0.1383 | 44.9231 | 438 | 0.2897 | 0.8897 |
|
116 |
+
| 0.1655 | 45.9487 | 448 | 0.2847 | 0.9044 |
|
117 |
+
| 0.1489 | 46.1538 | 450 | 0.2861 | 0.8897 |
|
118 |
+
|
119 |
+
|
120 |
+
### Framework versions
|
121 |
+
|
122 |
+
- Transformers 4.44.2
|
123 |
+
- Pytorch 2.4.1+cu121
|
124 |
+
- Datasets 3.0.1
|
125 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44772544
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce051ed4ec1ee80d4b26666367cd99e4cfe9a67fa9883ed6ae39c0a518411f58
|
3 |
size 44772544
|