--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - landscape widget: - text: isometric starcraft ashworld terrain datasets: - wdcqc/starcraft-remastered-melee-maps library_name: diffusers --- # DreamBooth model for Starcraft:Remastered terrain ![INDEX_FULL.JPG](https://huggingface.co/wdcqc/starcraft-terrain-64x64/resolve/main/outputs/index_full.jpg) This is a Stable Diffusion model fine-tuned on Starcraft terrain images with DreamBooth. It can be used by adding the `instance_prompt`: **isometric starcraft _tileset_ terrain** The _tileset_ should be one of `ashworld`, `badlands`, `desert`, `ice`, `jungle`, `platform`, `twilight` or `installation`, which corresponds to Starcraft terrain tilesets. It was trained on 64x64 terrain images from 1,808 melee maps including original Blizzard maps and those downloaded from Battle.net, scmscx.com and broodwarmaps.net. Run it on Huggingface Spaces: https://huggingface.co/spaces/wdcqc/wfd Or use this notebook on Colab: https://colab.research.google.com/github/wdcqc/WaveFunctionDiffusion/blob/remaster/colab/WaveFunctionDiffusion_Demo.ipynb In addition to Dreambooth, a custom VAE model (`AutoencoderTile`) for each tileset is trained to decode the latents to tileset probabilities ("waves") and generate as Starcraft maps. A WFC Guidance, inspired by the Wave Function Collapse algorithm, is also added to the pipeline. For more information about guidance please see this page: [Fine-Tuning, Guidance and Conditioning](https://github.com/huggingface/diffusion-models-class/tree/main/unit2) This model was created as part of the DreamBooth Hackathon. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on starcraft terrain images for the landscape theme. GitHub: https://github.com/wdcqc/WaveFunctionDiffusion ## Usage First clone the git repository: ```bash git clone https://github.com/wdcqc/WaveFunctionDiffusion.git ``` Then create a Jupyter notebook under the repository folder: ```python # Load pipeline from wfd.wf_diffusers import WaveFunctionDiffusionPipeline from wfd.wf_diffusers import AutoencoderTile from wfd.scmap import get_tile_data, get_tileset_keyword # Tilesets: ashworld, badlands, desert, ice, jungle, platform, twilight, install tileset = "ice" # The data files are located in wfd/scmap/tile_data/wfc wfc_data_path = get_tile_data("wfc/{}_64x64.npz".format(tileset)) # Use CUDA (otherwise it will take 15 minutes) device = "cuda" tilenet = AutoencoderTile.from_pretrained( "wdcqc/starcraft-terrain-64x64", subfolder="tile_vae_{}".format(tileset) ).to(device) pipeline = WaveFunctionDiffusionPipeline.from_pretrained( "wdcqc/starcraft-terrain-64x64", tile_vae = tilenet, wfc_data_path = wfc_data_path ) pipeline.to(device) # Double speed (only works for CUDA) pipeline.set_precision("half") # Generate pipeline output # need to include the dreambooth keywords "isometric starcraft {tileset_keyword} terrain" tileset_keyword = get_tileset_keyword(tileset) pipeline_output = pipeline( "lost temple, isometric starcraft {} terrain".format(tileset_keyword), num_inference_steps = 50, guidance_scale = 3.5, wfc_guidance_start_step = 20, wfc_guidance_strength = 5, wfc_guidance_final_steps = 20, wfc_guidance_final_strength = 10, ) image = pipeline_output.images[0] # Display raw generated image from IPython.display import display display(image) # Display generated image as tiles wave = pipeline_output.waves[0] tile_result = wave.argmax(axis=2) from wfd.scmap import demo_map_image display(demo_map_image(tile_result, wfc_data_path = wfc_data_path)) # Generate map file from wfd.scmap import tiles_to_scx import random, time tiles_to_scx( tile_result, "outputs/{}_{}_{:04d}.scx".format(tileset, time.strftime("%Y%m%d_%H%M%S"), random.randint(0, 1e4)), wfc_data_path = wfc_data_path ) # Open the generated map file in `outputs` folder with Scmdraft 2 ```