File size: 3,839 Bytes
4df123e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
language:
- en
license: apache-2.0
library_name: atommic
datasets:
- AHEAD
thumbnail: null
tags:
- quantitative-mri-mapping
- qVarNet
- ATOMMIC
- pytorch
model-index:
- name: QMRI_qVarNet_AHEAD_gaussian2d_12x
  results: []

---


## Model Overview

quantitative Variational Network (qVarNet) for 12x accelerated quantitative MRI mapping of R2*, S0, B0, phi maps on the AHEAD dataset.


## ATOMMIC: Training

To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
```
pip install atommic['all']
```

## How to Use this Model

The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.

Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/qMRI/AHEAD/conf).


### Automatically instantiate the model

```base
pretrained: true
checkpoint: https://huggingface.co/wdika/QMRI_qVarNet_AHEAD_gaussian2d_12x/blob/main/QMRI_qVarNet_AHEAD_gaussian2d_12x.atommic
mode: test
```

### Usage

You need to download the AHEAD dataset to effectively use this model. Check the [AHEAD](https://github.com/wdika/atommic/blob/main/projects/qMRI/AHEAD/README.md) page for more information.


## Model Architecture
```base
model:
  model_name: qVN
  use_reconstruction_module: false
  quantitative_module_num_cascades: 8
  quantitative_module_channels: 18
  quantitative_module_pooling_layers: 4
  quantitative_module_in_channels: 8
  quantitative_module_out_channels: 8
  quantitative_module_padding_size: 11
  quantitative_module_normalize: true
  quantitative_module_no_dc: false
  quantitative_module_signal_forward_model_sequence: MEGRE
  quantitative_module_dimensionality: 2
  quantitative_maps_scaling_factor: 1e-3
  quantitative_maps_regularization_factors:
    - 150.0
    - 150.0
    - 1000.0
    - 150.0
  quantitative_loss:
    ssim: 1.0
  kspace_quantitative_loss: false
  total_quantitative_loss_weight: 1.0  # balance between reconstruction and quantitative loss
  quantitative_parameters_regularization_factors:
    - R2star: 1.0
    - S0: 1.0
    - B0: 1.0
    - phi: 1.0
```

## Training
```base
  optim:
    name: adam
    lr: 1e-4
    betas:
      - 0.9
      - 0.98
    weight_decay: 0.0
    sched:
      name: InverseSquareRootAnnealing
      min_lr: 0.0
      last_epoch: -1
      warmup_ratio: 0.1

trainer:
  strategy: ddp_find_unused_parameters_false
  accelerator: gpu
  devices: 1
  num_nodes: 1
  max_epochs: 20
  precision: 16-mixed
  enable_checkpointing: false
  logger: false
  log_every_n_steps: 50
  check_val_every_n_epoch: -1
  max_steps: -1
```

## Performance

To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/qMRI/AHEAD/conf/targets) configuration files.

Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/qmapping.py) script for the qmri task, with --evaluation_type per_slice.

Results
-------

Evaluation against R2*, S0, B0, phi targets
-------------------------------------------
12x: MSE = 0.005571 +/- 0.02725 NMSE = 0.192 +/- 0.3344 PSNR = 24.36 +/- 7.791 SSIM = 0.7838 +/- 0.2059


## Limitations

This model was trained on very few subjects on the AHEAD dataset. It is not guaranteed to generalize to other datasets.


## References

[1] [ATOMMIC](https://github.com/wdika/atommic)

[2] Alkemade A, Mulder MJ, Groot JM, et al. The Amsterdam Ultra-high field adult lifespan database (AHEAD): A freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database. NeuroImage 2020;221.