wdika commited on
Commit
44851d4
·
1 Parent(s): afbce6d

Upload config

Browse files
Files changed (1) hide show
  1. readme_template.md +137 -0
readme_template.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - AHEAD
8
+ thumbnail: null
9
+ tags:
10
+ - quantitative-mri-mapping
11
+ - qVarNet
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: QMRI_qVarNet_AHEAD_gaussian2d_12x
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ quantitative Variational Network (qVarNet) for 12x accelerated quantitative MRI mapping of R2*, S0, B0, phi maps on the AHEAD dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/qMRI/AHEAD/conf).
38
+
39
+
40
+ ### Automatically instantiate the model
41
+
42
+ ```base
43
+ pretrained: true
44
+ checkpoint: https://huggingface.co/wdika/QMRI_qVarNet_AHEAD_gaussian2d_12x/blob/main/QMRI_qVarNet_AHEAD_gaussian2d_12x.atommic
45
+ mode: test
46
+ ```
47
+
48
+ ### Usage
49
+
50
+ You need to download the AHEAD dataset to effectively use this model. Check the [AHEAD](https://github.com/wdika/atommic/blob/main/projects/qMRI/AHEAD/README.md) page for more information.
51
+
52
+
53
+ ## Model Architecture
54
+ ```base
55
+ model:
56
+ model_name: qVN
57
+ use_reconstruction_module: false
58
+ quantitative_module_num_cascades: 8
59
+ quantitative_module_channels: 18
60
+ quantitative_module_pooling_layers: 4
61
+ quantitative_module_in_channels: 8
62
+ quantitative_module_out_channels: 8
63
+ quantitative_module_padding_size: 11
64
+ quantitative_module_normalize: true
65
+ quantitative_module_no_dc: false
66
+ quantitative_module_signal_forward_model_sequence: MEGRE
67
+ quantitative_module_dimensionality: 2
68
+ quantitative_maps_scaling_factor: 1e-3
69
+ quantitative_maps_regularization_factors:
70
+ - 150.0
71
+ - 150.0
72
+ - 1000.0
73
+ - 150.0
74
+ quantitative_loss:
75
+ ssim: 1.0
76
+ kspace_quantitative_loss: false
77
+ total_quantitative_loss_weight: 1.0 # balance between reconstruction and quantitative loss
78
+ quantitative_parameters_regularization_factors:
79
+ - R2star: 1.0
80
+ - S0: 1.0
81
+ - B0: 1.0
82
+ - phi: 1.0
83
+ ```
84
+
85
+ ## Training
86
+ ```base
87
+ optim:
88
+ name: adam
89
+ lr: 1e-4
90
+ betas:
91
+ - 0.9
92
+ - 0.98
93
+ weight_decay: 0.0
94
+ sched:
95
+ name: InverseSquareRootAnnealing
96
+ min_lr: 0.0
97
+ last_epoch: -1
98
+ warmup_ratio: 0.1
99
+
100
+ trainer:
101
+ strategy: ddp_find_unused_parameters_false
102
+ accelerator: gpu
103
+ devices: 1
104
+ num_nodes: 1
105
+ max_epochs: 20
106
+ precision: 16-mixed
107
+ enable_checkpointing: false
108
+ logger: false
109
+ log_every_n_steps: 50
110
+ check_val_every_n_epoch: -1
111
+ max_steps: -1
112
+ ```
113
+
114
+ ## Performance
115
+
116
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/qMRI/AHEAD/conf/targets) configuration files.
117
+
118
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/qmapping.py) script for the qmri task, with --evaluation_type per_slice.
119
+
120
+ Results
121
+ -------
122
+
123
+ Evaluation against R2*, S0, B0, phi targets
124
+ -------------------------------------------
125
+ 12x: MSE = 0.005571 +/- 0.02725 NMSE = 0.192 +/- 0.3344 PSNR = 24.36 +/- 7.791 SSIM = 0.7838 +/- 0.2059
126
+
127
+
128
+ ## Limitations
129
+
130
+ This model was trained on very few subjects on the AHEAD dataset. It is not guaranteed to generalize to other datasets.
131
+
132
+
133
+ ## References
134
+
135
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
136
+
137
+ [2] Alkemade A, Mulder MJ, Groot JM, et al. The Amsterdam Ultra-high field adult lifespan database (AHEAD): A freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database. NeuroImage 2020;221.