--- language: - en license: apache-2.0 library_name: atommic datasets: - AHEAD thumbnail: null tags: - quantitative-mri-mapping - qVarNet - ATOMMIC - pytorch model-index: - name: QMRI_qVarNet_AHEAD_gaussian2d_12x results: [] --- ## Model Overview quantitative Variational Network (qVarNet) for 12x accelerated quantitative MRI mapping of R2*, S0, B0, phi maps on the AHEAD dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/qMRI/AHEAD/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/QMRI_qVarNet_AHEAD_gaussian2d_12x/blob/main/QMRI_qVarNet_AHEAD_gaussian2d_12x.atommic mode: test ``` ### Usage You need to download the AHEAD dataset to effectively use this model. Check the [AHEAD](https://github.com/wdika/atommic/blob/main/projects/qMRI/AHEAD/README.md) page for more information. ## Model Architecture ```base model: model_name: qVN use_reconstruction_module: false quantitative_module_num_cascades: 8 quantitative_module_channels: 18 quantitative_module_pooling_layers: 4 quantitative_module_in_channels: 8 quantitative_module_out_channels: 8 quantitative_module_padding_size: 11 quantitative_module_normalize: true quantitative_module_no_dc: false quantitative_module_signal_forward_model_sequence: MEGRE quantitative_module_dimensionality: 2 quantitative_maps_scaling_factor: 1e-3 quantitative_maps_regularization_factors: - 150.0 - 150.0 - 1000.0 - 150.0 quantitative_loss: ssim: 1.0 kspace_quantitative_loss: false total_quantitative_loss_weight: 1.0 # balance between reconstruction and quantitative loss quantitative_parameters_regularization_factors: - R2star: 1.0 - S0: 1.0 - B0: 1.0 - phi: 1.0 ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.98 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/qMRI/AHEAD/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/qmapping.py) script for the qmri task, with --evaluation_type per_slice. Results ------- Evaluation against R2*, S0, B0, phi targets ------------------------------------------- 12x: MSE = 0.005571 +/- 0.02725 NMSE = 0.192 +/- 0.3344 PSNR = 24.36 +/- 7.791 SSIM = 0.7838 +/- 0.2059 ## Limitations This model was trained on very few subjects on the AHEAD dataset. It is not guaranteed to generalize to other datasets. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Alkemade A, Mulder MJ, Groot JM, et al. The Amsterdam Ultra-high field adult lifespan database (AHEAD): A freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database. NeuroImage 2020;221.