wdika commited on
Commit
d136ef2
1 Parent(s): 23fd9b8

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +123 -0
README.md ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - fastMRIBrainsMulticoil
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - CCNN
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_CCNN_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ Deep Cascade of Convolutional Neural Networks (CCNN) for 4x & 8x accelerated MRI Reconstruction on the fastMRIBrainsMulticoil dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf).
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```base
42
+ pretrained: true
43
+ checkpoint: https://huggingface.co/wdika/REC_CCNN_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM/blob/main/REC_CCNN_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM.atommic
44
+ mode: test
45
+ ```
46
+
47
+ ### Usage
48
+
49
+ You need to download the fastMRI Brains dataset to effectively use this model. Check the [fastMRIBrainsMulticoil](https://github.com/wdika/atommic/blob/main/projects/REC/fastMRIBrainsMulticoil/README.md) page for more information.
50
+
51
+
52
+ ## Model Architecture
53
+ ```base
54
+ model:
55
+ model_name: CascadeNet
56
+ num_cascades: 10
57
+ hidden_channels: 64
58
+ n_convs: 5
59
+ batchnorm: false
60
+ no_dc: false
61
+ accumulate_predictions: false
62
+ dimensionality: 2
63
+ reconstruction_loss:
64
+ l1: 0.1
65
+ ssim: 0.9
66
+ estimate_coil_sensitivity_maps_with_nn: true
67
+ ```
68
+
69
+ ## Training
70
+ ```base
71
+ optim:
72
+ name: adam
73
+ lr: 1e-4
74
+ betas:
75
+ - 0.9
76
+ - 0.999
77
+ weight_decay: 0.0
78
+ sched:
79
+ name: InverseSquareRootAnnealing
80
+ min_lr: 0.0
81
+ last_epoch: -1
82
+ warmup_ratio: 0.1
83
+
84
+ trainer:
85
+ strategy: ddp_find_unused_parameters_false
86
+ accelerator: gpu
87
+ devices: 1
88
+ num_nodes: 1
89
+ max_epochs: 20
90
+ precision: 16-mixed
91
+ enable_checkpointing: false
92
+ logger: false
93
+ log_every_n_steps: 50
94
+ check_val_every_n_epoch: -1
95
+ max_steps: -1
96
+ ```
97
+
98
+ ## Performance
99
+
100
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf/targets) configuration files.
101
+
102
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
103
+
104
+ Results
105
+ -------
106
+
107
+ Evaluation against RSS targets
108
+ ------------------------------
109
+ 4x: MSE = 0.0006811 +/- 0.003307 NMSE = 0.01827 +/- 0.06977 PSNR = 33.47 +/- 5.924 SSIM = 0.8865 +/- 0.1924
110
+
111
+ 8x: MSE = 0.001517 +/- 0.004095 NMSE = 0.04019 +/- 0.1055 PSNR = 29.4 +/- 5.708 SSIM = 0.8363 +/- 0.2015
112
+
113
+
114
+ ## Limitations
115
+
116
+ This model was trained on the fastMRIBrainsMulticoil batch0 dataset using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard.
117
+
118
+
119
+ ## References
120
+
121
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
122
+
123
+ [2] Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Trans Med Imaging. 2021 Sep;40(9):2306-2317. doi: 10.1109/TMI.2021.3075856. Epub 2021 Aug 31. PMID: 33929957; PMCID: PMC8428775.