Upload config
Browse files- readme_template.md +124 -0
readme_template.md
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
library_name: atommic
|
6 |
+
datasets:
|
7 |
+
- CC359
|
8 |
+
thumbnail: null
|
9 |
+
tags:
|
10 |
+
- image-reconstruction
|
11 |
+
- MoDL
|
12 |
+
- ATOMMIC
|
13 |
+
- pytorch
|
14 |
+
model-index:
|
15 |
+
- name: REC_MoDL_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
|
16 |
+
results: []
|
17 |
+
|
18 |
+
---
|
19 |
+
|
20 |
+
|
21 |
+
## Model Overview
|
22 |
+
|
23 |
+
MoDL: Model Based Deep Learning Architecture for Inverse Problems for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset.
|
24 |
+
|
25 |
+
|
26 |
+
## ATOMMIC: Training
|
27 |
+
|
28 |
+
To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
|
29 |
+
```
|
30 |
+
pip install atommic['all']
|
31 |
+
```
|
32 |
+
|
33 |
+
## How to Use this Model
|
34 |
+
|
35 |
+
The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
|
36 |
+
|
37 |
+
Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf).
|
38 |
+
|
39 |
+
### Automatically instantiate the model
|
40 |
+
|
41 |
+
```base
|
42 |
+
pretrained: true
|
43 |
+
checkpoint: https://huggingface.co/wdika/REC_MoDL_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_MoDL_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic
|
44 |
+
mode: test
|
45 |
+
```
|
46 |
+
|
47 |
+
### Usage
|
48 |
+
|
49 |
+
You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information.
|
50 |
+
|
51 |
+
|
52 |
+
## Model Architecture
|
53 |
+
```base
|
54 |
+
model:
|
55 |
+
model_name: MoDL
|
56 |
+
unrolled_iterations: 5
|
57 |
+
residual_blocks: 5
|
58 |
+
channels: 64
|
59 |
+
regularization_factor: 0.1
|
60 |
+
penalization_weight: 1.0
|
61 |
+
conjugate_gradient_dc: false
|
62 |
+
conjugate_gradient_iterations: 1
|
63 |
+
dimensionality: 2
|
64 |
+
reconstruction_loss:
|
65 |
+
l1: 0.1
|
66 |
+
ssim: 0.9
|
67 |
+
estimate_coil_sensitivity_maps_with_nn: true
|
68 |
+
```
|
69 |
+
|
70 |
+
## Training
|
71 |
+
```base
|
72 |
+
optim:
|
73 |
+
name: adamw
|
74 |
+
lr: 1e-4
|
75 |
+
betas:
|
76 |
+
- 0.9
|
77 |
+
- 0.999
|
78 |
+
weight_decay: 0.0
|
79 |
+
sched:
|
80 |
+
name: CosineAnnealing
|
81 |
+
min_lr: 0.0
|
82 |
+
last_epoch: -1
|
83 |
+
warmup_ratio: 0.1
|
84 |
+
|
85 |
+
trainer:
|
86 |
+
strategy: ddp_find_unused_parameters_false
|
87 |
+
accelerator: gpu
|
88 |
+
devices: 1
|
89 |
+
num_nodes: 1
|
90 |
+
max_epochs: 20
|
91 |
+
precision: 16-mixed
|
92 |
+
enable_checkpointing: false
|
93 |
+
logger: false
|
94 |
+
log_every_n_steps: 50
|
95 |
+
check_val_every_n_epoch: -1
|
96 |
+
max_steps: -1
|
97 |
+
```
|
98 |
+
|
99 |
+
## Performance
|
100 |
+
|
101 |
+
To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files.
|
102 |
+
|
103 |
+
Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
|
104 |
+
|
105 |
+
Results
|
106 |
+
-------
|
107 |
+
|
108 |
+
Evaluation against RSS targets
|
109 |
+
------------------------------
|
110 |
+
5x: MSE = 0.001766 +/- 0.001753 NMSE = 0.02701 +/- 0.02698 PSNR = 27.97 +/- 4.196 SSIM = 0.8441 +/- 0.06801
|
111 |
+
|
112 |
+
10x: MSE = 0.002893 +/- 0.003142 NMSE = 0.04522 +/- 0.05141 PSNR = 25.89 +/- 4.393 SSIM = 0.7926 +/- 0.08846
|
113 |
+
|
114 |
+
|
115 |
+
## Limitations
|
116 |
+
|
117 |
+
This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard.
|
118 |
+
|
119 |
+
|
120 |
+
## References
|
121 |
+
|
122 |
+
[1] [ATOMMIC](https://github.com/wdika/atommic)
|
123 |
+
|
124 |
+
[2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186
|