wdika commited on
Commit
fd5c3d4
·
verified ·
1 Parent(s): edd6310

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +124 -0
README.md ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - fastMRIBrainsMulticoil
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - MoDL
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_MoDL_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ MoDL: Model Based Deep Learning Architecture for Inverse Problems for 4x & 8x accelerated MRI Reconstruction on the fastMRIBrainsMulticoil dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf).
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```base
42
+ pretrained: true
43
+ checkpoint: https://huggingface.co/wdika/REC_MoDL_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM/blob/main/REC_MoDL_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM.atommic
44
+ mode: test
45
+ ```
46
+
47
+ ### Usage
48
+
49
+ You need to download the fastMRI Brains dataset to effectively use this model. Check the [fastMRIBrainsMulticoil](https://github.com/wdika/atommic/blob/main/projects/REC/fastMRIBrainsMulticoil/README.md) page for more information.
50
+
51
+
52
+ ## Model Architecture
53
+ ```base
54
+ model:
55
+ model_name: MoDL
56
+ unrolled_iterations: 5
57
+ residual_blocks: 5
58
+ channels: 64
59
+ regularization_factor: 0.1
60
+ penalization_weight: 1.0
61
+ conjugate_gradient_dc: false
62
+ conjugate_gradient_iterations: 1
63
+ dimensionality: 2
64
+ reconstruction_loss:
65
+ l1: 0.1
66
+ ssim: 0.9
67
+ estimate_coil_sensitivity_maps_with_nn: true
68
+ ```
69
+
70
+ ## Training
71
+ ```base
72
+ optim:
73
+ name: adam
74
+ lr: 1e-4
75
+ betas:
76
+ - 0.9
77
+ - 0.999
78
+ weight_decay: 0.0
79
+ sched:
80
+ name: InverseSquareRootAnnealing
81
+ min_lr: 0.0
82
+ last_epoch: -1
83
+ warmup_ratio: 0.1
84
+
85
+ trainer:
86
+ strategy: ddp_find_unused_parameters_false
87
+ accelerator: gpu
88
+ devices: 1
89
+ num_nodes: 1
90
+ max_epochs: 20
91
+ precision: 16-mixed
92
+ enable_checkpointing: false
93
+ logger: false
94
+ log_every_n_steps: 50
95
+ check_val_every_n_epoch: -1
96
+ max_steps: -1
97
+ ```
98
+
99
+ ## Performance
100
+
101
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf/targets) configuration files.
102
+
103
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
104
+
105
+ Results
106
+ -------
107
+
108
+ Evaluation against RSS targets
109
+ ------------------------------
110
+ 4x: MSE = 0.0009811 +/- 0.003791 NMSE = 0.02496 +/- 0.0693 PSNR = 31.44 +/- 5.655 SSIM = 0.8703 +/- 0.1877
111
+
112
+ 8x: MSE = 0.002104 +/- 0.004177 NMSE = 0.05376 +/- 0.09522 PSNR = 27.81 +/- 5.862 SSIM = 0.8133 +/- 0.1925
113
+
114
+
115
+ ## Limitations
116
+
117
+ This model was trained on the fastMRIBrainsMulticoil batch0 dataset using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard.
118
+
119
+
120
+ ## References
121
+
122
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
123
+
124
+ [2] Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Trans Med Imaging. 2021 Sep;40(9):2306-2317. doi: 10.1109/TMI.2021.3075856. Epub 2021 Aug 31. PMID: 33929957; PMCID: PMC8428775.