wdika commited on
Commit
16ee391
1 Parent(s): 8b53152

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +136 -0
README.md ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - CC359
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - RVN
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_RVN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ Recurrent Variational Network (RVN) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf).
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```base
42
+ pretrained: true
43
+ checkpoint: https://huggingface.co/wdika/REC_RVN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_RVN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic
44
+ mode: test
45
+ ```
46
+
47
+ ### Usage
48
+
49
+ You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information.
50
+
51
+
52
+ ## Model Architecture
53
+ ```base
54
+ model:
55
+ model_name: RVN
56
+ in_channels: 2
57
+ recurrent_hidden_channels: 64
58
+ recurrent_num_layers: 4
59
+ num_steps: 8
60
+ no_parameter_sharing: true
61
+ learned_initializer: true
62
+ initializer_initialization: "sense"
63
+ initializer_channels:
64
+ - 32
65
+ - 32
66
+ - 64
67
+ - 64
68
+ initializer_dilations:
69
+ - 1
70
+ - 1
71
+ - 2
72
+ - 4
73
+ initializer_multiscale: 1
74
+ accumulate_predictions: false
75
+ dimensionality: 2
76
+ reconstruction_loss:
77
+ l1: 0.1
78
+ ssim: 0.9
79
+ estimate_coil_sensitivity_maps_with_nn: true
80
+ ```
81
+
82
+ ## Training
83
+ ```base
84
+ optim:
85
+ name: adamw
86
+ lr: 1e-4
87
+ betas:
88
+ - 0.9
89
+ - 0.999
90
+ weight_decay: 0.0
91
+ sched:
92
+ name: CosineAnnealing
93
+ min_lr: 0.0
94
+ last_epoch: -1
95
+ warmup_ratio: 0.1
96
+
97
+ trainer:
98
+ strategy: ddp_find_unused_parameters_false
99
+ accelerator: gpu
100
+ devices: 1
101
+ num_nodes: 1
102
+ max_epochs: 20
103
+ precision: 16-mixed
104
+ enable_checkpointing: false
105
+ logger: false
106
+ log_every_n_steps: 50
107
+ check_val_every_n_epoch: -1
108
+ max_steps: -1
109
+ ```
110
+
111
+ ## Performance
112
+
113
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files.
114
+
115
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
116
+
117
+ Results
118
+ -------
119
+
120
+ Evaluation against RSS targets
121
+ ------------------------------
122
+ 5x: MSE = 0.001627 +/- 0.001304 NMSE = 0.02511 +/- 0.02188 PSNR = 28.14 +/- 3.531 SSIM = 0.8449 +/- 0.06722
123
+
124
+ 10x: MSE = 0.002677 +/- 0.00225 NMSE = 0.0416 +/- 0.03916 PSNR = 26.03 +/- 3.767 SSIM = 0.787 +/- 0.09309
125
+
126
+
127
+ ## Limitations
128
+
129
+ This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard.
130
+
131
+
132
+ ## References
133
+
134
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
135
+
136
+ [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186