File size: 4,087 Bytes
81ecc10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
language:
- en
license: apache-2.0
library_name: atommic
datasets:
- BraTS2023AdultGlioma
thumbnail: null
tags:
- image-segmentation
- UNet
- ATOMMIC
- pytorch
model-index:
- name: SEG_UNet_BraTS2023AdultGlioma
  results: []

---


## Model Overview

AttentionUNet for MRI Segmentation on the BraTS2023AdultGlioma dataset.


## ATOMMIC: Training

To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
```
pip install atommic['all']
```

## How to Use this Model

The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.

Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/SEG/BraTS2023AdultGlioma/conf).

### Automatically instantiate the model

```base
pretrained: true
checkpoint: https://huggingface.co/wdika/SEG_UNet_BraTS2023AdultGlioma/blob/main/SEG_UNet_BraTS2023AdultGlioma.atommic
mode: test
```

### Usage

You need to download the BraTS 2023 Adult Glioma dataset to effectively use this model. Check the [BraTS2023AdultGlioma](https://github.com/wdika/atommic/blob/main/projects/SEG/BraTS2023AdultGlioma/README.md) page for more information.


## Model Architecture
```base
model:
  model_name: SEGMENTATIONUNET
  segmentation_module: UNet
  segmentation_module_input_channels: 4
  segmentation_module_output_channels: 4
  segmentation_module_channels: 32
  segmentation_module_pooling_layers: 5
  segmentation_module_dropout: 0.0
  segmentation_module_normalize: false
  segmentation_loss:
    dice: 1.0
  dice_loss_include_background: true  # always set to true if the background is removed
  dice_loss_to_onehot_y: false
  dice_loss_sigmoid: false
  dice_loss_softmax: false
  dice_loss_other_act: none
  dice_loss_squared_pred: false
  dice_loss_jaccard: false
  dice_loss_flatten: false
  dice_loss_reduction: mean_batch
  dice_loss_smooth_nr: 1e-5
  dice_loss_smooth_dr: 1e-5
  dice_loss_batch: true
  dice_metric_include_background: true  # always set to true if the background is removed
  dice_metric_to_onehot_y: false
  dice_metric_sigmoid: false
  dice_metric_softmax: false
  dice_metric_other_act: none
  dice_metric_squared_pred: false
  dice_metric_jaccard: false
  dice_metric_flatten: false
  dice_metric_reduction: mean_batch
  dice_metric_smooth_nr: 1e-5
  dice_metric_smooth_dr: 1e-5
  dice_metric_batch: true
  segmentation_classes_thresholds: [ 0.5, 0.5, 0.5, 0.5 ]
  segmentation_activation: sigmoid
  magnitude_input: true
  log_multiple_modalities: true  # log all modalities in the same image, e.g. T1, T2, T1ce, FLAIR will be concatenated
  normalization_type: minmax
  normalize_segmentation_output: true
  complex_data: false
```

## Training
```base
  optim:
    name: adam
    lr: 1e-4
    betas:
      - 0.9
      - 0.98
    weight_decay: 0.0
    sched:
      name: InverseSquareRootAnnealing
      min_lr: 0.0
      last_epoch: -1
      warmup_ratio: 0.1

trainer:
  strategy: ddp
  accelerator: gpu
  devices: 1
  num_nodes: 1
  max_epochs: 10
  precision: 16-mixed
  enable_checkpointing: false
  logger: false
  log_every_n_steps: 50
  check_val_every_n_epoch: -1
  max_steps: -1
```

## Performance

Evaluation can be performed using the segmentation [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) script for the segmentation task, with --evaluation_type per_slice.

Results
-------

Evaluation
----------
DICE = 0.9372 +/- 0.1175 F1 = 0.6713 +/- 0.7867 HD95 = 3.504 +/- 2.089 IOU = 0.5346 +/- 0.6628


## Limitations

This model was trained on the BraTS2023AdultGlioma dataset with stacked T1c, T1n, T2f, T2w images and might differ in performance compared to the leaderboard results.


## References

[1] [ATOMMIC](https://github.com/wdika/atommic)

[2] Kazerooni AF, Khalili N, Liu X, et al. The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs). 2023