File size: 2,432 Bytes
7b46cff 77116d0 7b46cff 77116d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
- text-to-speech
datasets:
- voxpopuli
model-index:
- name: speecht5_finetuned_voxpopuli_pl
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_finetuned_voxpopuli_pl
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4550
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6954 | 0.5 | 100 | 0.6110 |
| 0.644 | 1.01 | 200 | 0.5731 |
| 0.602 | 1.51 | 300 | 0.5330 |
| 0.5524 | 2.01 | 400 | 0.4982 |
| 0.5412 | 2.51 | 500 | 0.4870 |
| 0.5256 | 3.02 | 600 | 0.4775 |
| 0.5141 | 3.52 | 700 | 0.4728 |
| 0.5125 | 4.02 | 800 | 0.4688 |
| 0.5106 | 4.52 | 900 | 0.4657 |
| 0.5037 | 5.03 | 1000 | 0.4627 |
| 0.5048 | 5.53 | 1100 | 0.4622 |
| 0.4983 | 6.03 | 1200 | 0.4583 |
| 0.4981 | 6.53 | 1300 | 0.4580 |
| 0.4942 | 7.04 | 1400 | 0.4580 |
| 0.4945 | 7.54 | 1500 | 0.4578 |
| 0.4922 | 8.04 | 1600 | 0.4568 |
| 0.4893 | 8.54 | 1700 | 0.4562 |
| 0.4948 | 9.05 | 1800 | 0.4552 |
| 0.4892 | 9.55 | 1900 | 0.4547 |
| 0.4933 | 10.05 | 2000 | 0.4550 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.0
- Tokenizers 0.13.3 |