wenge-research
commited on
Commit
•
782e264
1
Parent(s):
77c6fd2
Upload 6 files
Browse files- latest +1 -0
- modeling_YAYIUIE.py +824 -0
- special_tokens_map.json +30 -0
- tokenization_YAYIUIE.py +257 -0
- tokenizer_config.json +46 -0
- zero_to_fp32.py +578 -0
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step4000
|
modeling_YAYIUIE.py
ADDED
@@ -0,0 +1,824 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .configuration_YAYIUIE import YAYIUIEConfig
|
2 |
+
from .generation_utils import build_chat_input, TextIterStreamer
|
3 |
+
|
4 |
+
import math
|
5 |
+
from threading import Thread
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import CrossEntropyLoss
|
11 |
+
from torch.nn import functional as F
|
12 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
13 |
+
from transformers.activations import ACT2FN
|
14 |
+
from transformers.generation.utils import GenerationConfig
|
15 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
16 |
+
from transformers.utils import logging, ContextManagers
|
17 |
+
|
18 |
+
import os
|
19 |
+
from contextlib import contextmanager
|
20 |
+
from accelerate import init_empty_weights
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
try:
|
25 |
+
from xformers import ops as xops
|
26 |
+
except ImportError:
|
27 |
+
xops = None
|
28 |
+
logger.warning(
|
29 |
+
"Xformers is not installed correctly. If you want to use memory_efficient_attention to accelerate training use the following command to install Xformers\npip install xformers."
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def _get_interleave(n):
|
34 |
+
def _get_interleave_power_of_2(n):
|
35 |
+
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
|
36 |
+
ratio = start
|
37 |
+
return [start * ratio**i for i in range(n)]
|
38 |
+
|
39 |
+
if math.log2(n).is_integer():
|
40 |
+
return _get_interleave_power_of_2(n)
|
41 |
+
else:
|
42 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
43 |
+
return (
|
44 |
+
_get_interleave_power_of_2(closest_power_of_2)
|
45 |
+
+ _get_interleave(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
def _fill_with_neg_inf(t):
|
50 |
+
"""FP16-compatible function that fills a tensor with -inf."""
|
51 |
+
return t.float().fill_(float("-inf")).type_as(t)
|
52 |
+
|
53 |
+
|
54 |
+
def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
|
55 |
+
_future_mask = torch.triu(_fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1)
|
56 |
+
_future_mask = _future_mask.unsqueeze(0) + alibi
|
57 |
+
new_future_mask = _future_mask.to(tensor)
|
58 |
+
return new_future_mask[: tensor.shape[0] * attn_heads, :maxpos, :maxpos]
|
59 |
+
|
60 |
+
|
61 |
+
def _gen_alibi_mask(tensor, n_head, max_pos):
|
62 |
+
slopes = torch.Tensor(_get_interleave(n_head))
|
63 |
+
position_point = torch.arange(max_pos) - max_pos + 1
|
64 |
+
position_point = position_point.unsqueeze(0).unsqueeze(0).expand(n_head, -1, -1)
|
65 |
+
diag = torch.diag(position_point[0])
|
66 |
+
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(-1, -2)
|
67 |
+
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point
|
68 |
+
alibi = alibi.view(n_head, 1, max_pos)
|
69 |
+
alibi_mask = torch.triu(_fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1)
|
70 |
+
alibi_mask = alibi_mask.unsqueeze(0) + alibi
|
71 |
+
return alibi_mask
|
72 |
+
|
73 |
+
|
74 |
+
class RMSNorm(torch.nn.Module):
|
75 |
+
def __init__(self, hidden_size, epsilon=1e-6):
|
76 |
+
super().__init__()
|
77 |
+
self.weight = torch.nn.Parameter(torch.empty(hidden_size))
|
78 |
+
self.epsilon = epsilon
|
79 |
+
|
80 |
+
def forward(self, hidden_states):
|
81 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
82 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
|
83 |
+
|
84 |
+
# convert into half-precision
|
85 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
86 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
87 |
+
|
88 |
+
return self.weight * hidden_states
|
89 |
+
|
90 |
+
|
91 |
+
class MLP(torch.nn.Module):
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
hidden_size: int,
|
95 |
+
intermediate_size: int,
|
96 |
+
hidden_act: str,
|
97 |
+
):
|
98 |
+
super().__init__()
|
99 |
+
self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
|
100 |
+
self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
|
101 |
+
self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
|
102 |
+
self.act_fn = ACT2FN[hidden_act]
|
103 |
+
|
104 |
+
def forward(self, x):
|
105 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
106 |
+
|
107 |
+
|
108 |
+
class YAYIUIEAttention(torch.nn.Module):
|
109 |
+
def __init__(self, config: YAYIUIEConfig):
|
110 |
+
super().__init__()
|
111 |
+
self.config = config
|
112 |
+
self.hidden_size = config.hidden_size
|
113 |
+
self.num_heads = config.num_attention_heads
|
114 |
+
self.head_dim = self.hidden_size // self.num_heads
|
115 |
+
self.max_position_embeddings = config.model_max_length
|
116 |
+
|
117 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
118 |
+
raise ValueError(
|
119 |
+
f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
|
120 |
+
)
|
121 |
+
self.W_pack = torch.nn.Linear(
|
122 |
+
self.hidden_size, 3 * self.hidden_size, bias=False
|
123 |
+
)
|
124 |
+
self.o_proj = torch.nn.Linear(
|
125 |
+
self.num_heads * self.head_dim, self.hidden_size, bias=False
|
126 |
+
)
|
127 |
+
|
128 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
129 |
+
return (
|
130 |
+
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
131 |
+
.transpose(1, 2)
|
132 |
+
.contiguous()
|
133 |
+
)
|
134 |
+
|
135 |
+
def forward(
|
136 |
+
self,
|
137 |
+
hidden_states: torch.Tensor,
|
138 |
+
attention_mask: Optional[torch.Tensor] = None,
|
139 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
140 |
+
output_attentions: bool = False,
|
141 |
+
use_cache: bool = False,
|
142 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
143 |
+
bsz, q_len, _ = hidden_states.size()
|
144 |
+
|
145 |
+
proj = self.W_pack(hidden_states)
|
146 |
+
proj = (
|
147 |
+
proj.unflatten(-1, (3, self.hidden_size))
|
148 |
+
.unsqueeze(0)
|
149 |
+
.transpose(0, -2)
|
150 |
+
.squeeze(-2)
|
151 |
+
)
|
152 |
+
query_states = (
|
153 |
+
proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
154 |
+
)
|
155 |
+
key_states = (
|
156 |
+
proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
157 |
+
)
|
158 |
+
value_states = (
|
159 |
+
proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
160 |
+
)
|
161 |
+
|
162 |
+
kv_seq_len = key_states.shape[-2]
|
163 |
+
if past_key_value is not None:
|
164 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
165 |
+
|
166 |
+
if past_key_value is not None:
|
167 |
+
# reuse k, v, self_attention
|
168 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
169 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
170 |
+
|
171 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
172 |
+
if xops is not None and self.training:
|
173 |
+
attn_weights = None
|
174 |
+
# query_states = query_states.transpose(1, 2)
|
175 |
+
# key_states = key_states.transpose(1, 2)
|
176 |
+
# value_states = value_states.transpose(1, 2)
|
177 |
+
# attn_output = xops.memory_efficient_attention(
|
178 |
+
# query_states, key_states, value_states, attn_bias=attention_mask
|
179 |
+
# )
|
180 |
+
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
|
181 |
+
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = attention_mask)
|
182 |
+
attn_output = attn_output.transpose(1, 2)
|
183 |
+
else:
|
184 |
+
attn_weights = torch.matmul(
|
185 |
+
query_states, key_states.transpose(2, 3)
|
186 |
+
) / math.sqrt(self.head_dim)
|
187 |
+
|
188 |
+
if attention_mask is not None:
|
189 |
+
if q_len == 1: # inference with cache
|
190 |
+
if len(attention_mask.size()) == 4:
|
191 |
+
attention_mask = attention_mask[:, :, -1:, :]
|
192 |
+
else:
|
193 |
+
attention_mask = attention_mask[:, -1:, :]
|
194 |
+
attn_weights = attn_weights + attention_mask
|
195 |
+
attn_weights = torch.max(
|
196 |
+
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
|
197 |
+
)
|
198 |
+
|
199 |
+
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
200 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
201 |
+
|
202 |
+
attn_output = attn_output.transpose(1, 2)
|
203 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
204 |
+
attn_output = self.o_proj(attn_output)
|
205 |
+
|
206 |
+
if not output_attentions:
|
207 |
+
attn_weights = None
|
208 |
+
|
209 |
+
return attn_output, attn_weights, past_key_value
|
210 |
+
|
211 |
+
|
212 |
+
class YAYIUIELayer(torch.nn.Module):
|
213 |
+
def __init__(self, config: YAYIUIEConfig):
|
214 |
+
super().__init__()
|
215 |
+
self.hidden_size = config.hidden_size
|
216 |
+
self.self_attn = YAYIUIEAttention(config=config)
|
217 |
+
self.mlp = MLP(
|
218 |
+
hidden_size=self.hidden_size,
|
219 |
+
intermediate_size=config.intermediate_size,
|
220 |
+
hidden_act=config.hidden_act,
|
221 |
+
)
|
222 |
+
self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
223 |
+
self.post_attention_layernorm = RMSNorm(
|
224 |
+
config.hidden_size, epsilon=config.rms_norm_eps
|
225 |
+
)
|
226 |
+
|
227 |
+
def forward(
|
228 |
+
self,
|
229 |
+
hidden_states: torch.Tensor,
|
230 |
+
attention_mask: Optional[torch.Tensor] = None,
|
231 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
232 |
+
output_attentions: Optional[bool] = False,
|
233 |
+
use_cache: Optional[bool] = False,
|
234 |
+
) -> Tuple[
|
235 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
236 |
+
]:
|
237 |
+
residual = hidden_states
|
238 |
+
|
239 |
+
hidden_states = self.input_layernorm(hidden_states)
|
240 |
+
|
241 |
+
# Self Attention
|
242 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
243 |
+
hidden_states=hidden_states,
|
244 |
+
attention_mask=attention_mask,
|
245 |
+
past_key_value=past_key_value,
|
246 |
+
output_attentions=output_attentions,
|
247 |
+
use_cache=use_cache,
|
248 |
+
)
|
249 |
+
hidden_states = residual + hidden_states
|
250 |
+
|
251 |
+
# Fully Connected
|
252 |
+
residual = hidden_states
|
253 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
254 |
+
hidden_states = self.mlp(hidden_states)
|
255 |
+
hidden_states = residual + hidden_states
|
256 |
+
|
257 |
+
outputs = (hidden_states,)
|
258 |
+
|
259 |
+
if use_cache:
|
260 |
+
outputs += (present_key_value,)
|
261 |
+
|
262 |
+
return outputs
|
263 |
+
|
264 |
+
|
265 |
+
class YAYIUIEPreTrainedModel(PreTrainedModel):
|
266 |
+
config_class = YAYIUIEConfig
|
267 |
+
base_model_prefix = "model"
|
268 |
+
supports_gradient_checkpointing = True
|
269 |
+
_no_split_modules = ["YAYIUIELayer"]
|
270 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
271 |
+
|
272 |
+
def _init_weights(self, module):
|
273 |
+
std = self.config.initializer_range
|
274 |
+
if isinstance(module, torch.nn.Linear):
|
275 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
276 |
+
if module.bias is not None:
|
277 |
+
module.bias.data.zero_()
|
278 |
+
elif isinstance(module, torch.nn.Embedding):
|
279 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
280 |
+
if module.padding_idx is not None:
|
281 |
+
module.weight.data[module.padding_idx].zero_()
|
282 |
+
|
283 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
284 |
+
if isinstance(module, YAYIUIEModel):
|
285 |
+
module.gradient_checkpointing = value
|
286 |
+
|
287 |
+
|
288 |
+
class YAYIUIEModel(YAYIUIEPreTrainedModel):
|
289 |
+
def __init__(self, config: YAYIUIEConfig):
|
290 |
+
super().__init__(config)
|
291 |
+
self.padding_idx = config.pad_token_id
|
292 |
+
self.vocab_size = config.vocab_size
|
293 |
+
self.n_head = config.num_attention_heads
|
294 |
+
self.embed_tokens = torch.nn.Embedding(
|
295 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
296 |
+
)
|
297 |
+
self.layers = torch.nn.ModuleList(
|
298 |
+
[YAYIUIELayer(config) for _ in range(config.num_hidden_layers)]
|
299 |
+
)
|
300 |
+
self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
301 |
+
|
302 |
+
self.gradient_checkpointing = config.gradient_checkpointing
|
303 |
+
self.post_init()
|
304 |
+
self.max_cache_pos = config.model_max_length
|
305 |
+
self.first_run = True
|
306 |
+
self.alibi_mask = None
|
307 |
+
|
308 |
+
def get_input_embeddings(self):
|
309 |
+
return self.embed_tokens
|
310 |
+
|
311 |
+
def set_input_embeddings(self, value):
|
312 |
+
self.embed_tokens = value
|
313 |
+
|
314 |
+
def get_alibi_mask(self, tensor, seq_length_with_past):
|
315 |
+
if self.training:
|
316 |
+
slopes = torch.Tensor(_get_interleave(self.n_head))
|
317 |
+
position_point = (
|
318 |
+
torch.arange(seq_length_with_past) - seq_length_with_past + 1
|
319 |
+
)
|
320 |
+
position_point = (
|
321 |
+
position_point.unsqueeze(0)
|
322 |
+
.unsqueeze(0)
|
323 |
+
.expand(self.n_head, seq_length_with_past, -1)
|
324 |
+
)
|
325 |
+
diag = torch.diag(position_point[0])
|
326 |
+
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(
|
327 |
+
-1, -2
|
328 |
+
)
|
329 |
+
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point
|
330 |
+
mask = _buffered_future_mask(
|
331 |
+
tensor, seq_length_with_past, alibi, self.n_head
|
332 |
+
)
|
333 |
+
else:
|
334 |
+
if self.first_run:
|
335 |
+
self.first_run = False
|
336 |
+
self.register_buffer(
|
337 |
+
"future_mask",
|
338 |
+
_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos).to(
|
339 |
+
tensor
|
340 |
+
),
|
341 |
+
persistent=False,
|
342 |
+
)
|
343 |
+
if seq_length_with_past > self.max_cache_pos:
|
344 |
+
self.max_cache_pos = seq_length_with_past
|
345 |
+
self.register_buffer(
|
346 |
+
"future_mask",
|
347 |
+
_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos).to(
|
348 |
+
tensor
|
349 |
+
),
|
350 |
+
persistent=False,
|
351 |
+
)
|
352 |
+
mask = self.future_mask[
|
353 |
+
: self.n_head, :seq_length_with_past, :seq_length_with_past
|
354 |
+
]
|
355 |
+
return mask
|
356 |
+
|
357 |
+
def forward(
|
358 |
+
self,
|
359 |
+
input_ids: torch.LongTensor = None,
|
360 |
+
attention_mask: Optional[torch.Tensor] = None,
|
361 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
362 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
363 |
+
use_cache: Optional[bool] = False,
|
364 |
+
output_attentions: Optional[bool] = False,
|
365 |
+
output_hidden_states: Optional[bool] = False,
|
366 |
+
return_dict: Optional[bool] = True,
|
367 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
368 |
+
if input_ids is not None and inputs_embeds is not None:
|
369 |
+
raise ValueError(
|
370 |
+
"You cannot provide both input_ids and inputs_embeds simultaneously"
|
371 |
+
)
|
372 |
+
elif input_ids is not None:
|
373 |
+
batch_size, seq_length = input_ids.shape
|
374 |
+
elif inputs_embeds is not None:
|
375 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
376 |
+
else:
|
377 |
+
raise ValueError("You need to provide input_ids or inputs_embeds")
|
378 |
+
|
379 |
+
return_dict = (
|
380 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
381 |
+
)
|
382 |
+
|
383 |
+
seq_length_with_past = seq_length
|
384 |
+
|
385 |
+
if past_key_values is not None:
|
386 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
387 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
388 |
+
|
389 |
+
if inputs_embeds is None:
|
390 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
391 |
+
|
392 |
+
if self.training:
|
393 |
+
if (
|
394 |
+
self.alibi_mask is None
|
395 |
+
or self.alibi_mask.shape[-1] != seq_length_with_past
|
396 |
+
):
|
397 |
+
self.alibi_mask = self.get_alibi_mask(
|
398 |
+
inputs_embeds, seq_length_with_past
|
399 |
+
)
|
400 |
+
alibi_mask = self.alibi_mask
|
401 |
+
else:
|
402 |
+
alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
|
403 |
+
|
404 |
+
if attention_mask is not None:
|
405 |
+
if len(attention_mask.shape) == 2:
|
406 |
+
expanded_mask = attention_mask.to(alibi_mask.dtype)
|
407 |
+
expanded_mask = torch.tril(
|
408 |
+
torch.gt(expanded_mask[:, :, None] * expanded_mask[:, None, :], 0)
|
409 |
+
) * torch.eq(expanded_mask[:, :, None] - expanded_mask[:, None, :], 0)
|
410 |
+
else:
|
411 |
+
expanded_mask = attention_mask
|
412 |
+
bsz = inputs_embeds.size(0)
|
413 |
+
src_len, tgt_len = alibi_mask.size()[-2:]
|
414 |
+
expanded_mask = (
|
415 |
+
expanded_mask.unsqueeze(1)
|
416 |
+
.expand(bsz, 1, src_len, tgt_len)
|
417 |
+
.to(alibi_mask.dtype)
|
418 |
+
)
|
419 |
+
inverted_mask = 1.0 - expanded_mask
|
420 |
+
inverted_mask = inverted_mask.masked_fill(
|
421 |
+
inverted_mask.to(torch.bool), torch.finfo(alibi_mask.dtype).min
|
422 |
+
)
|
423 |
+
attention_mask = inverted_mask + alibi_mask.unsqueeze(0)
|
424 |
+
else:
|
425 |
+
attention_mask = alibi_mask
|
426 |
+
|
427 |
+
hidden_states = inputs_embeds
|
428 |
+
|
429 |
+
if self.gradient_checkpointing and self.training:
|
430 |
+
if use_cache:
|
431 |
+
logger.warning_once(
|
432 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
433 |
+
)
|
434 |
+
use_cache = False
|
435 |
+
|
436 |
+
# decoder layers
|
437 |
+
all_hidden_states = () if output_hidden_states else None
|
438 |
+
all_self_attns = () if output_attentions else None
|
439 |
+
next_decoder_cache = () if use_cache else None
|
440 |
+
|
441 |
+
for idx, decoder_layer in enumerate(self.layers):
|
442 |
+
if output_hidden_states:
|
443 |
+
all_hidden_states += (hidden_states,)
|
444 |
+
|
445 |
+
past_key_value = (
|
446 |
+
past_key_values[idx] if past_key_values is not None else None
|
447 |
+
)
|
448 |
+
|
449 |
+
if self.gradient_checkpointing and self.training:
|
450 |
+
|
451 |
+
def create_custom_forward(module):
|
452 |
+
def custom_forward(*inputs):
|
453 |
+
# None for past_key_value
|
454 |
+
return module(*inputs, output_attentions, None)
|
455 |
+
|
456 |
+
return custom_forward
|
457 |
+
|
458 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
459 |
+
create_custom_forward(decoder_layer),
|
460 |
+
hidden_states,
|
461 |
+
attention_mask,
|
462 |
+
None,
|
463 |
+
)
|
464 |
+
else:
|
465 |
+
layer_outputs = decoder_layer(
|
466 |
+
hidden_states,
|
467 |
+
attention_mask=attention_mask,
|
468 |
+
past_key_value=past_key_value,
|
469 |
+
output_attentions=output_attentions,
|
470 |
+
use_cache=use_cache,
|
471 |
+
)
|
472 |
+
|
473 |
+
hidden_states = layer_outputs[0]
|
474 |
+
|
475 |
+
if use_cache:
|
476 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
477 |
+
|
478 |
+
if output_attentions:
|
479 |
+
all_self_attns += (layer_outputs[1],)
|
480 |
+
|
481 |
+
hidden_states = self.norm(hidden_states)
|
482 |
+
|
483 |
+
# add hidden states from the last decoder layer
|
484 |
+
if output_hidden_states:
|
485 |
+
all_hidden_states += (hidden_states,)
|
486 |
+
|
487 |
+
next_cache = next_decoder_cache if use_cache else None
|
488 |
+
if not return_dict:
|
489 |
+
return tuple(
|
490 |
+
v
|
491 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
492 |
+
if v is not None
|
493 |
+
)
|
494 |
+
return BaseModelOutputWithPast(
|
495 |
+
last_hidden_state=hidden_states,
|
496 |
+
past_key_values=next_cache,
|
497 |
+
hidden_states=all_hidden_states,
|
498 |
+
attentions=all_self_attns,
|
499 |
+
)
|
500 |
+
|
501 |
+
|
502 |
+
class NormHead(nn.Module):
|
503 |
+
def __init__(self, hidden_size, vocab_size, bias=False):
|
504 |
+
super().__init__()
|
505 |
+
self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size)))
|
506 |
+
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
507 |
+
self.first_flag = True
|
508 |
+
|
509 |
+
def forward(self, hidden_states):
|
510 |
+
if self.training:
|
511 |
+
norm_weight = nn.functional.normalize(self.weight)
|
512 |
+
elif self.first_flag:
|
513 |
+
self.first_flag = False
|
514 |
+
self.weight = nn.Parameter(nn.functional.normalize(self.weight))
|
515 |
+
norm_weight = self.weight
|
516 |
+
else:
|
517 |
+
norm_weight = self.weight
|
518 |
+
return nn.functional.linear(hidden_states, norm_weight)
|
519 |
+
|
520 |
+
_init_weights = True
|
521 |
+
@contextmanager
|
522 |
+
def no_init_weights(_enable=True):
|
523 |
+
global _init_weights
|
524 |
+
old_init_weights = _init_weights
|
525 |
+
if _enable:
|
526 |
+
_init_weights = False
|
527 |
+
try:
|
528 |
+
yield
|
529 |
+
finally:
|
530 |
+
_init_weights = old_init_weights
|
531 |
+
|
532 |
+
|
533 |
+
class YAYIUIEForCausalLM(YAYIUIEPreTrainedModel):
|
534 |
+
def __init__(self, config, *model_args, **model_kwargs):
|
535 |
+
super().__init__(config, *model_args, **model_kwargs)
|
536 |
+
self.model = YAYIUIEModel(config)
|
537 |
+
self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
|
538 |
+
#if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
|
539 |
+
if hasattr(config, "quantization_config") and isinstance(config.quantization_config, dict) and config.quantization_config.get('load_in_4bit', False):
|
540 |
+
try:
|
541 |
+
from .quantizer import quantize_offline, init_model_weight_int4
|
542 |
+
except ImportError:
|
543 |
+
raise ImportError(f"Needs quantize_offline to run quantize.")
|
544 |
+
quantize_offline(self, 4)
|
545 |
+
# Initialize weights and apply final processing
|
546 |
+
self.post_init()
|
547 |
+
|
548 |
+
def get_input_embeddings(self):
|
549 |
+
return self.model.embed_tokens
|
550 |
+
|
551 |
+
def set_input_embeddings(self, value):
|
552 |
+
self.model.embed_tokens = value
|
553 |
+
|
554 |
+
def get_output_embeddings(self):
|
555 |
+
return self.lm_head
|
556 |
+
|
557 |
+
def set_output_embeddings(self, new_embeddings):
|
558 |
+
self.lm_head = new_embeddings
|
559 |
+
|
560 |
+
def set_decoder(self, decoder):
|
561 |
+
self.model = decoder
|
562 |
+
|
563 |
+
def get_decoder(self):
|
564 |
+
return self.model
|
565 |
+
|
566 |
+
@classmethod
|
567 |
+
def from_pretrained(
|
568 |
+
cls,
|
569 |
+
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
570 |
+
*model_args,
|
571 |
+
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
|
572 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
573 |
+
ignore_mismatched_sizes: bool = False,
|
574 |
+
force_download: bool = False,
|
575 |
+
local_files_only: bool = False,
|
576 |
+
token: Optional[Union[str, bool]] = None,
|
577 |
+
revision: str = "main",
|
578 |
+
use_safetensors: bool = None,
|
579 |
+
**kwargs,
|
580 |
+
):
|
581 |
+
|
582 |
+
# Load config if we don't provide a configuration
|
583 |
+
if not isinstance(config, PretrainedConfig):
|
584 |
+
config_path = config if config is not None else pretrained_model_name_or_path
|
585 |
+
config, model_kwargs = cls.config_class.from_pretrained(
|
586 |
+
config_path,
|
587 |
+
cache_dir=cache_dir,
|
588 |
+
return_unused_kwargs=True,
|
589 |
+
force_download=force_download,
|
590 |
+
resume_download=False,
|
591 |
+
proxies=None,
|
592 |
+
local_files_only=local_files_only,
|
593 |
+
token=token,
|
594 |
+
revision=revision,
|
595 |
+
subfolder="",
|
596 |
+
_from_auto=False,
|
597 |
+
_from_pipeline=None,
|
598 |
+
**kwargs,
|
599 |
+
)
|
600 |
+
else:
|
601 |
+
model_kwargs = kwargs
|
602 |
+
|
603 |
+
if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
|
604 |
+
try:
|
605 |
+
from .quantizer import init_model_weight_int4
|
606 |
+
from accelerate import init_empty_weights, dispatch_model, infer_auto_device_map
|
607 |
+
from accelerate.utils import CustomDtype
|
608 |
+
from accelerate.utils import get_balanced_memory
|
609 |
+
except ImportError:
|
610 |
+
raise ImportError(f"Needs import model weight init func to run quantize.")
|
611 |
+
# Instantiate model.
|
612 |
+
init_contexts = [no_init_weights(_enable=True)]
|
613 |
+
init_contexts.append(init_empty_weights())
|
614 |
+
with ContextManagers(init_contexts):
|
615 |
+
model = cls(config)
|
616 |
+
|
617 |
+
model_file = os.path.join(pretrained_model_name_or_path, 'pytorch_model.bin')
|
618 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
619 |
+
model.is_quantized = True
|
620 |
+
|
621 |
+
device_map = kwargs.pop("device_map", None)
|
622 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
623 |
+
if device_map is not None:
|
624 |
+
kwargs = {"no_split_module_classes": model._no_split_modules}
|
625 |
+
target_dtype = CustomDtype.INT4
|
626 |
+
max_memory = get_balanced_memory(
|
627 |
+
model,
|
628 |
+
dtype=target_dtype,
|
629 |
+
low_zero=(device_map == "balanced_low_0"),
|
630 |
+
max_memory=None,
|
631 |
+
**kwargs,
|
632 |
+
)
|
633 |
+
kwargs["max_memory"] = max_memory
|
634 |
+
device_map = infer_auto_device_map(model, dtype=target_dtype, **kwargs)
|
635 |
+
model = init_model_weight_int4(config, model, state_dict)
|
636 |
+
|
637 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
638 |
+
model.eval()
|
639 |
+
# If it is a model with generation capabilities, attempt to load the generation config
|
640 |
+
if model.can_generate():
|
641 |
+
try:
|
642 |
+
model.generation_config = GenerationConfig.from_pretrained(
|
643 |
+
pretrained_model_name_or_path,
|
644 |
+
cache_dir=cache_dir,
|
645 |
+
force_download=force_download,
|
646 |
+
resume_download=False,
|
647 |
+
proxies=None,
|
648 |
+
local_files_only=local_files_only,
|
649 |
+
token=token,
|
650 |
+
revision=revision,
|
651 |
+
subfolder="",
|
652 |
+
_from_auto=False,
|
653 |
+
_from_pipeline=None,
|
654 |
+
**kwargs,
|
655 |
+
)
|
656 |
+
except (OSError, TypeError):
|
657 |
+
logger.info(
|
658 |
+
"Generation config file not found, using a generation config created from the model config."
|
659 |
+
)
|
660 |
+
pass
|
661 |
+
|
662 |
+
if device_map is not None:
|
663 |
+
dispatch_model(model, device_map=device_map)
|
664 |
+
|
665 |
+
return model
|
666 |
+
|
667 |
+
return super(YAYIUIEForCausalLM, cls).from_pretrained(pretrained_model_name_or_path, *model_args,
|
668 |
+
config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes,
|
669 |
+
force_download=force_download, local_files_only=local_files_only, token=token, revision=revision,
|
670 |
+
use_safetensors=use_safetensors, **kwargs)
|
671 |
+
|
672 |
+
def forward(
|
673 |
+
self,
|
674 |
+
input_ids: torch.LongTensor = None,
|
675 |
+
attention_mask: Optional[torch.Tensor] = None,
|
676 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
677 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
678 |
+
labels: Optional[torch.LongTensor] = None,
|
679 |
+
use_cache: Optional[bool] = None,
|
680 |
+
output_attentions: Optional[bool] = False,
|
681 |
+
output_hidden_states: Optional[bool] = False,
|
682 |
+
return_dict: Optional[bool] = True,
|
683 |
+
**kwargs,
|
684 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
685 |
+
return_dict = (
|
686 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
687 |
+
)
|
688 |
+
|
689 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
690 |
+
outputs = self.model(
|
691 |
+
input_ids=input_ids,
|
692 |
+
attention_mask=attention_mask,
|
693 |
+
past_key_values=past_key_values,
|
694 |
+
inputs_embeds=inputs_embeds,
|
695 |
+
use_cache=use_cache,
|
696 |
+
output_attentions=output_attentions,
|
697 |
+
output_hidden_states=output_hidden_states,
|
698 |
+
return_dict=return_dict,
|
699 |
+
)
|
700 |
+
|
701 |
+
hidden_states = outputs[0]
|
702 |
+
logits = self.lm_head(hidden_states)
|
703 |
+
loss = None
|
704 |
+
if labels is not None:
|
705 |
+
# Shift so that tokens < n predict n
|
706 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
707 |
+
shift_labels = labels[..., 1:].contiguous()
|
708 |
+
# Flatten the tokens
|
709 |
+
loss_fct = CrossEntropyLoss()
|
710 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
711 |
+
shift_labels = shift_labels.view(-1)
|
712 |
+
softmax_normalizer = shift_logits.max(-1).values ** 2
|
713 |
+
z_loss = self.config.z_loss_weight * softmax_normalizer.mean()
|
714 |
+
# Enable model parallelism
|
715 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
716 |
+
loss = loss_fct(shift_logits, shift_labels) + z_loss
|
717 |
+
|
718 |
+
if not return_dict:
|
719 |
+
output = (logits,) + outputs[1:]
|
720 |
+
return (loss,) + output if loss is not None else output
|
721 |
+
|
722 |
+
return CausalLMOutputWithPast(
|
723 |
+
loss=loss,
|
724 |
+
logits=logits,
|
725 |
+
past_key_values=outputs.past_key_values,
|
726 |
+
hidden_states=outputs.hidden_states,
|
727 |
+
attentions=outputs.attentions,
|
728 |
+
)
|
729 |
+
|
730 |
+
def quantize(self, bits: int):
|
731 |
+
try:
|
732 |
+
from .quantizer import quantize_online
|
733 |
+
except ImportError:
|
734 |
+
raise ImportError(f"Needs QLinear to run quantize.")
|
735 |
+
return quantize_online(self, bits)
|
736 |
+
|
737 |
+
def prepare_inputs_for_generation(
|
738 |
+
self,
|
739 |
+
input_ids: torch.LongTensor,
|
740 |
+
past_key_values: Optional[torch.Tensor] = None,
|
741 |
+
attention_mask: Optional[torch.Tensor] = None,
|
742 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
743 |
+
**kwargs,
|
744 |
+
):
|
745 |
+
if past_key_values:
|
746 |
+
input_ids = input_ids[:, -1:]
|
747 |
+
|
748 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
749 |
+
if inputs_embeds is not None and past_key_values is None:
|
750 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
751 |
+
else:
|
752 |
+
model_inputs = {"input_ids": input_ids}
|
753 |
+
|
754 |
+
model_inputs.update(
|
755 |
+
{
|
756 |
+
"past_key_values": past_key_values,
|
757 |
+
"use_cache": kwargs.get("use_cache"),
|
758 |
+
"attention_mask": attention_mask,
|
759 |
+
}
|
760 |
+
)
|
761 |
+
return model_inputs
|
762 |
+
|
763 |
+
@staticmethod
|
764 |
+
def _reorder_cache(past_key_values, beam_idx):
|
765 |
+
return tuple(
|
766 |
+
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
|
767 |
+
for layer_past in past_key_values
|
768 |
+
)
|
769 |
+
|
770 |
+
def _build_chat_input(
|
771 |
+
self, tokenizer, messages: List[dict], max_new_tokens: int = 0
|
772 |
+
):
|
773 |
+
max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens
|
774 |
+
max_input_tokens = self.config.model_max_length - max_new_tokens
|
775 |
+
max_input_tokens = max(self.config.model_max_length // 2, max_input_tokens)
|
776 |
+
total_input, round_input = [], []
|
777 |
+
for i, message in enumerate(messages[::-1]):
|
778 |
+
content_tokens = tokenizer.encode(message["content"])
|
779 |
+
if message["role"] == "user":
|
780 |
+
round_input = (
|
781 |
+
[self.generation_config.user_token_id]
|
782 |
+
+ content_tokens
|
783 |
+
+ round_input
|
784 |
+
)
|
785 |
+
if (
|
786 |
+
total_input
|
787 |
+
and len(total_input) + len(round_input) > max_input_tokens
|
788 |
+
):
|
789 |
+
break
|
790 |
+
else:
|
791 |
+
total_input = round_input + total_input
|
792 |
+
if len(total_input) >= max_input_tokens:
|
793 |
+
break
|
794 |
+
else:
|
795 |
+
round_input = []
|
796 |
+
elif message["role"] == "assistant":
|
797 |
+
round_input = (
|
798 |
+
[self.generation_config.assistant_token_id]
|
799 |
+
+ content_tokens
|
800 |
+
+ [self.generation_config.eos_token_id]
|
801 |
+
+ round_input
|
802 |
+
)
|
803 |
+
else:
|
804 |
+
raise ValueError(f"message role not supported yet: {message['role']}")
|
805 |
+
total_input = total_input[-max_input_tokens:] # truncate left
|
806 |
+
total_input.append(self.generation_config.assistant_token_id)
|
807 |
+
total_input = torch.LongTensor([total_input]).to(self.device)
|
808 |
+
return total_input
|
809 |
+
|
810 |
+
def chat(self, tokenizer, messages: List[dict], stream=False,
|
811 |
+
generation_config: Optional[GenerationConfig]=None):
|
812 |
+
generation_config = generation_config or self.generation_config
|
813 |
+
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
|
814 |
+
if stream:
|
815 |
+
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
816 |
+
Thread(target=self.generate, kwargs=dict(
|
817 |
+
inputs=input_ids, streamer=streamer,
|
818 |
+
generation_config=generation_config,
|
819 |
+
)).start()
|
820 |
+
return streamer
|
821 |
+
else:
|
822 |
+
outputs = self.generate(input_ids, generation_config=generation_config)
|
823 |
+
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
|
824 |
+
return response
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": true
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": true
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": true
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": true
|
29 |
+
}
|
30 |
+
}
|
tokenization_YAYIUIE.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
from shutil import copyfile
|
4 |
+
from typing import Any, Dict, List, Optional, Tuple
|
5 |
+
|
6 |
+
import sentencepiece as spm
|
7 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
8 |
+
from transformers.utils import logging
|
9 |
+
|
10 |
+
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
14 |
+
|
15 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
16 |
+
"vocab_file": {},
|
17 |
+
"tokenizer_file": {},
|
18 |
+
}
|
19 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
20 |
+
|
21 |
+
|
22 |
+
class YAYIUIETokenizer(PreTrainedTokenizer):
|
23 |
+
"""
|
24 |
+
Construct a YAYIUIE tokenizer. Based on byte-level Byte-Pair-Encoding.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
vocab_file (`str`):
|
28 |
+
Path to the vocabulary file.
|
29 |
+
"""
|
30 |
+
|
31 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
32 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
33 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
34 |
+
model_input_names = ["input_ids", "attention_mask"]
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
vocab_file,
|
39 |
+
unk_token="<unk>",
|
40 |
+
bos_token="<s>",
|
41 |
+
eos_token="</s>",
|
42 |
+
pad_token=None,
|
43 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
44 |
+
add_bos_token=True,
|
45 |
+
add_eos_token=False,
|
46 |
+
clean_up_tokenization_spaces=False,
|
47 |
+
**kwargs,
|
48 |
+
):
|
49 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
50 |
+
bos_token = (
|
51 |
+
AddedToken(bos_token, lstrip=False, rstrip=False)
|
52 |
+
if isinstance(bos_token, str)
|
53 |
+
else bos_token
|
54 |
+
)
|
55 |
+
eos_token = (
|
56 |
+
AddedToken(eos_token, lstrip=False, rstrip=False)
|
57 |
+
if isinstance(eos_token, str)
|
58 |
+
else eos_token
|
59 |
+
)
|
60 |
+
unk_token = (
|
61 |
+
AddedToken(unk_token, lstrip=False, rstrip=False)
|
62 |
+
if isinstance(unk_token, str)
|
63 |
+
else unk_token
|
64 |
+
)
|
65 |
+
pad_token = (
|
66 |
+
AddedToken(pad_token, lstrip=False, rstrip=False)
|
67 |
+
if isinstance(pad_token, str)
|
68 |
+
else pad_token
|
69 |
+
)
|
70 |
+
super().__init__(
|
71 |
+
bos_token=bos_token,
|
72 |
+
eos_token=eos_token,
|
73 |
+
unk_token=unk_token,
|
74 |
+
pad_token=pad_token,
|
75 |
+
add_bos_token=add_bos_token,
|
76 |
+
add_eos_token=add_eos_token,
|
77 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
78 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
79 |
+
**kwargs,
|
80 |
+
)
|
81 |
+
self.vocab_file = vocab_file
|
82 |
+
self.add_bos_token = add_bos_token
|
83 |
+
self.add_eos_token = add_eos_token
|
84 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
85 |
+
self.sp_model.Load(vocab_file)
|
86 |
+
|
87 |
+
def __getstate__(self):
|
88 |
+
state = self.__dict__.copy()
|
89 |
+
state["sp_model"] = None
|
90 |
+
return state
|
91 |
+
|
92 |
+
def __setstate__(self, d):
|
93 |
+
self.__dict__ = d
|
94 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
95 |
+
self.sp_model.Load(self.vocab_file)
|
96 |
+
|
97 |
+
@property
|
98 |
+
def vocab_size(self):
|
99 |
+
"""Returns vocab size"""
|
100 |
+
return self.sp_model.get_piece_size()
|
101 |
+
|
102 |
+
def get_vocab(self):
|
103 |
+
"""Returns vocab as a dict"""
|
104 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
105 |
+
vocab.update(self.added_tokens_encoder)
|
106 |
+
return vocab
|
107 |
+
|
108 |
+
def _tokenize(self, text):
|
109 |
+
"""Returns a tokenized string."""
|
110 |
+
return self.sp_model.encode(text, out_type=str)
|
111 |
+
|
112 |
+
def _convert_token_to_id(self, token):
|
113 |
+
"""Converts a token (str) in an id using the vocab."""
|
114 |
+
return self.sp_model.piece_to_id(token)
|
115 |
+
|
116 |
+
def _convert_id_to_token(self, index):
|
117 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
118 |
+
token = self.sp_model.IdToPiece(index)
|
119 |
+
return token
|
120 |
+
|
121 |
+
def convert_tokens_to_string(self, tokens):
|
122 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
123 |
+
current_sub_tokens = []
|
124 |
+
out_string = ""
|
125 |
+
prev_is_special = False
|
126 |
+
for i, token in enumerate(tokens):
|
127 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
128 |
+
if token in self.all_special_tokens:
|
129 |
+
if not prev_is_special and i != 0:
|
130 |
+
out_string += " "
|
131 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
132 |
+
prev_is_special = True
|
133 |
+
current_sub_tokens = []
|
134 |
+
else:
|
135 |
+
current_sub_tokens.append(token)
|
136 |
+
prev_is_special = False
|
137 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
138 |
+
return out_string
|
139 |
+
|
140 |
+
def save_vocabulary(
|
141 |
+
self, save_directory, filename_prefix: Optional[str] = None
|
142 |
+
) -> Tuple[str]:
|
143 |
+
"""
|
144 |
+
Save the vocabulary and special tokens file to a directory.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
save_directory (`str`):
|
148 |
+
The directory in which to save the vocabulary.
|
149 |
+
|
150 |
+
Returns:
|
151 |
+
`Tuple(str)`: Paths to the files saved.
|
152 |
+
"""
|
153 |
+
if not os.path.isdir(save_directory):
|
154 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
155 |
+
return
|
156 |
+
out_vocab_file = os.path.join(
|
157 |
+
save_directory,
|
158 |
+
(filename_prefix + "-" if filename_prefix else "")
|
159 |
+
+ VOCAB_FILES_NAMES["vocab_file"],
|
160 |
+
)
|
161 |
+
|
162 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
163 |
+
out_vocab_file
|
164 |
+
) and os.path.isfile(self.vocab_file):
|
165 |
+
copyfile(self.vocab_file, out_vocab_file)
|
166 |
+
elif not os.path.isfile(self.vocab_file):
|
167 |
+
with open(out_vocab_file, "wb") as fi:
|
168 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
169 |
+
fi.write(content_spiece_model)
|
170 |
+
|
171 |
+
return (out_vocab_file,)
|
172 |
+
|
173 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
174 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
175 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
176 |
+
|
177 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
178 |
+
|
179 |
+
if token_ids_1 is not None:
|
180 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
181 |
+
|
182 |
+
return output
|
183 |
+
|
184 |
+
def get_special_tokens_mask(
|
185 |
+
self,
|
186 |
+
token_ids_0: List[int],
|
187 |
+
token_ids_1: Optional[List[int]] = None,
|
188 |
+
already_has_special_tokens: bool = False,
|
189 |
+
) -> List[int]:
|
190 |
+
"""
|
191 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
192 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
193 |
+
|
194 |
+
Args:
|
195 |
+
token_ids_0 (`List[int]`):
|
196 |
+
List of IDs.
|
197 |
+
token_ids_1 (`List[int]`, *optional*):
|
198 |
+
Optional second list of IDs for sequence pairs.
|
199 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
200 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
204 |
+
"""
|
205 |
+
if already_has_special_tokens:
|
206 |
+
return super().get_special_tokens_mask(
|
207 |
+
token_ids_0=token_ids_0,
|
208 |
+
token_ids_1=token_ids_1,
|
209 |
+
already_has_special_tokens=True,
|
210 |
+
)
|
211 |
+
|
212 |
+
bos_token_id = [1] if self.add_bos_token else []
|
213 |
+
eos_token_id = [1] if self.add_eos_token else []
|
214 |
+
|
215 |
+
if token_ids_1 is None:
|
216 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
217 |
+
return (
|
218 |
+
bos_token_id
|
219 |
+
+ ([0] * len(token_ids_0))
|
220 |
+
+ eos_token_id
|
221 |
+
+ bos_token_id
|
222 |
+
+ ([0] * len(token_ids_1))
|
223 |
+
+ eos_token_id
|
224 |
+
)
|
225 |
+
|
226 |
+
def create_token_type_ids_from_sequences(
|
227 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
228 |
+
) -> List[int]:
|
229 |
+
"""
|
230 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
231 |
+
sequence pair mask has the following format:
|
232 |
+
|
233 |
+
```
|
234 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
235 |
+
| first sequence | second sequence |
|
236 |
+
```
|
237 |
+
|
238 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
239 |
+
|
240 |
+
Args:
|
241 |
+
token_ids_0 (`List[int]`):
|
242 |
+
List of ids.
|
243 |
+
token_ids_1 (`List[int]`, *optional*):
|
244 |
+
Optional second list of IDs for sequence pairs.
|
245 |
+
|
246 |
+
Returns:
|
247 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
248 |
+
"""
|
249 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
250 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
251 |
+
|
252 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
253 |
+
|
254 |
+
if token_ids_1 is not None:
|
255 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
256 |
+
|
257 |
+
return output
|
tokenizer_config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"auto_map": {
|
5 |
+
"AutoTokenizer": [
|
6 |
+
"tokenization_YAYIUIE.YAYIUIETokenizer",
|
7 |
+
null
|
8 |
+
]
|
9 |
+
},
|
10 |
+
"bos_token": {
|
11 |
+
"__type": "AddedToken",
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": true,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": true
|
17 |
+
},
|
18 |
+
"clean_up_tokenization_spaces": false,
|
19 |
+
"eos_token": {
|
20 |
+
"__type": "AddedToken",
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": true
|
26 |
+
},
|
27 |
+
"model_max_length": 2048,
|
28 |
+
"pad_token": {
|
29 |
+
"__type": "AddedToken",
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": true,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": true
|
35 |
+
},
|
36 |
+
"sp_model_kwargs": {},
|
37 |
+
"tokenizer_class": "YAYIUIETokenizer",
|
38 |
+
"unk_token": {
|
39 |
+
"__type": "AddedToken",
|
40 |
+
"content": "<unk>",
|
41 |
+
"lstrip": false,
|
42 |
+
"normalized": true,
|
43 |
+
"rstrip": false,
|
44 |
+
"single_word": true
|
45 |
+
}
|
46 |
+
}
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dicts.append(torch.load(f, map_location=device))
|
147 |
+
|
148 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
149 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
150 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
151 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
152 |
+
|
153 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
154 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
155 |
+
# use the max of the partition_count to get the dp world_size.
|
156 |
+
|
157 |
+
if type(world_size) is list:
|
158 |
+
world_size = max(world_size)
|
159 |
+
|
160 |
+
if world_size != total_files:
|
161 |
+
raise ValueError(
|
162 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
163 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
164 |
+
)
|
165 |
+
|
166 |
+
# the groups are named differently in each stage
|
167 |
+
if zero_stage <= 2:
|
168 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
169 |
+
elif zero_stage == 3:
|
170 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
171 |
+
else:
|
172 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
173 |
+
|
174 |
+
if zero_stage <= 2:
|
175 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
176 |
+
elif zero_stage == 3:
|
177 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
178 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
179 |
+
#
|
180 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
181 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
182 |
+
|
183 |
+
fp32_flat_groups = [
|
184 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
185 |
+
]
|
186 |
+
|
187 |
+
return zero_stage, world_size, fp32_flat_groups
|
188 |
+
|
189 |
+
|
190 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
191 |
+
"""
|
192 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
193 |
+
|
194 |
+
Args:
|
195 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
196 |
+
|
197 |
+
"""
|
198 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
199 |
+
|
200 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
201 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
202 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
203 |
+
|
204 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
205 |
+
|
206 |
+
zero_model_states = parse_model_states(model_files)
|
207 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
208 |
+
|
209 |
+
if zero_stage <= 2:
|
210 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
211 |
+
elif zero_stage == 3:
|
212 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
248 |
+
param_shapes = zero_model_states[0].param_shapes
|
249 |
+
|
250 |
+
# Reconstruction protocol:
|
251 |
+
#
|
252 |
+
# XXX: document this
|
253 |
+
|
254 |
+
if debug:
|
255 |
+
for i in range(world_size):
|
256 |
+
for j in range(len(fp32_flat_groups[0])):
|
257 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
258 |
+
|
259 |
+
# XXX: memory usage doubles here (zero2)
|
260 |
+
num_param_groups = len(fp32_flat_groups[0])
|
261 |
+
merged_single_partition_of_fp32_groups = []
|
262 |
+
for i in range(num_param_groups):
|
263 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
264 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
265 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
266 |
+
avail_numel = sum(
|
267 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
271 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
272 |
+
# not asserting if there is a mismatch due to possible padding
|
273 |
+
print(f"Have {avail_numel} numels to process.")
|
274 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
275 |
+
|
276 |
+
# params
|
277 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
278 |
+
# out-of-core computing solution
|
279 |
+
total_numel = 0
|
280 |
+
total_params = 0
|
281 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
282 |
+
offset = 0
|
283 |
+
avail_numel = full_single_fp32_vector.numel()
|
284 |
+
for name, shape in shapes.items():
|
285 |
+
|
286 |
+
unpartitioned_numel = shape.numel()
|
287 |
+
total_numel += unpartitioned_numel
|
288 |
+
total_params += 1
|
289 |
+
|
290 |
+
if debug:
|
291 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
292 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
293 |
+
offset += unpartitioned_numel
|
294 |
+
|
295 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
296 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
297 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
298 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
299 |
+
align_to = 2 * world_size
|
300 |
+
|
301 |
+
def zero2_align(x):
|
302 |
+
return align_to * math.ceil(x / align_to)
|
303 |
+
|
304 |
+
if debug:
|
305 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
306 |
+
|
307 |
+
offset = zero2_align(offset)
|
308 |
+
avail_numel = zero2_align(avail_numel)
|
309 |
+
|
310 |
+
if debug:
|
311 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
312 |
+
|
313 |
+
# Sanity check
|
314 |
+
if offset != avail_numel:
|
315 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
316 |
+
|
317 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
318 |
+
|
319 |
+
|
320 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
321 |
+
state_dict = OrderedDict()
|
322 |
+
|
323 |
+
# buffers
|
324 |
+
buffers = zero_model_states[0].buffers
|
325 |
+
state_dict.update(buffers)
|
326 |
+
if debug:
|
327 |
+
print(f"added {len(buffers)} buffers")
|
328 |
+
|
329 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
330 |
+
|
331 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
332 |
+
|
333 |
+
# recover shared parameters
|
334 |
+
for pair in zero_model_states[0].shared_params:
|
335 |
+
if pair[1] in state_dict:
|
336 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
337 |
+
|
338 |
+
return state_dict
|
339 |
+
|
340 |
+
|
341 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
342 |
+
remainder = unpartitioned_numel % world_size
|
343 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
344 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
345 |
+
return partitioned_numel, padding_numel
|
346 |
+
|
347 |
+
|
348 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
349 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
350 |
+
return
|
351 |
+
|
352 |
+
if debug:
|
353 |
+
for i in range(world_size):
|
354 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
355 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
356 |
+
|
357 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
358 |
+
wanted_params = len(frozen_param_shapes)
|
359 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
360 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
361 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
362 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
363 |
+
|
364 |
+
total_params = 0
|
365 |
+
total_numel = 0
|
366 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
367 |
+
total_params += 1
|
368 |
+
unpartitioned_numel = shape.numel()
|
369 |
+
total_numel += unpartitioned_numel
|
370 |
+
|
371 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
372 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
373 |
+
|
374 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
375 |
+
|
376 |
+
if debug:
|
377 |
+
print(
|
378 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
379 |
+
)
|
380 |
+
|
381 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
382 |
+
|
383 |
+
|
384 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
385 |
+
param_shapes = zero_model_states[0].param_shapes
|
386 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
387 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
388 |
+
# param, re-consolidating each param, while dealing with padding if any
|
389 |
+
|
390 |
+
# merge list of dicts, preserving order
|
391 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
for i in range(world_size):
|
395 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
396 |
+
|
397 |
+
wanted_params = len(param_shapes)
|
398 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
399 |
+
# not asserting if there is a mismatch due to possible padding
|
400 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
401 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
402 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
403 |
+
|
404 |
+
# params
|
405 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
406 |
+
# out-of-core computing solution
|
407 |
+
offset = 0
|
408 |
+
total_numel = 0
|
409 |
+
total_params = 0
|
410 |
+
for name, shape in param_shapes.items():
|
411 |
+
|
412 |
+
unpartitioned_numel = shape.numel()
|
413 |
+
total_numel += unpartitioned_numel
|
414 |
+
total_params += 1
|
415 |
+
|
416 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
417 |
+
|
418 |
+
if debug:
|
419 |
+
print(
|
420 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
421 |
+
)
|
422 |
+
|
423 |
+
# XXX: memory usage doubles here
|
424 |
+
state_dict[name] = torch.cat(
|
425 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
426 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
427 |
+
offset += partitioned_numel
|
428 |
+
|
429 |
+
offset *= world_size
|
430 |
+
|
431 |
+
# Sanity check
|
432 |
+
if offset != avail_numel:
|
433 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
434 |
+
|
435 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
436 |
+
|
437 |
+
|
438 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
439 |
+
state_dict = OrderedDict()
|
440 |
+
|
441 |
+
# buffers
|
442 |
+
buffers = zero_model_states[0].buffers
|
443 |
+
state_dict.update(buffers)
|
444 |
+
if debug:
|
445 |
+
print(f"added {len(buffers)} buffers")
|
446 |
+
|
447 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
448 |
+
|
449 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
450 |
+
|
451 |
+
# recover shared parameters
|
452 |
+
for pair in zero_model_states[0].shared_params:
|
453 |
+
if pair[1] in state_dict:
|
454 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
455 |
+
|
456 |
+
return state_dict
|
457 |
+
|
458 |
+
|
459 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
460 |
+
"""
|
461 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
462 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
463 |
+
via a model hub.
|
464 |
+
|
465 |
+
Args:
|
466 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
467 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
- pytorch ``state_dict``
|
471 |
+
|
472 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
473 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
474 |
+
the checkpoint.
|
475 |
+
|
476 |
+
A typical usage might be ::
|
477 |
+
|
478 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
479 |
+
# do the training and checkpoint saving
|
480 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
481 |
+
model = model.cpu() # move to cpu
|
482 |
+
model.load_state_dict(state_dict)
|
483 |
+
# submit to model hub or save the model to share with others
|
484 |
+
|
485 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
486 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
487 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
488 |
+
|
489 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
490 |
+
|
491 |
+
"""
|
492 |
+
if tag is None:
|
493 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
494 |
+
if os.path.isfile(latest_path):
|
495 |
+
with open(latest_path, 'r') as fd:
|
496 |
+
tag = fd.read().strip()
|
497 |
+
else:
|
498 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
499 |
+
|
500 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
501 |
+
|
502 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
503 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
504 |
+
|
505 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
506 |
+
|
507 |
+
|
508 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
509 |
+
"""
|
510 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
511 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
512 |
+
|
513 |
+
Args:
|
514 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
515 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
516 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
517 |
+
"""
|
518 |
+
|
519 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
520 |
+
print(f"Saving fp32 state dict to {output_file}")
|
521 |
+
torch.save(state_dict, output_file)
|
522 |
+
|
523 |
+
|
524 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
525 |
+
"""
|
526 |
+
1. Put the provided model to cpu
|
527 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
528 |
+
3. Load it into the provided model
|
529 |
+
|
530 |
+
Args:
|
531 |
+
- ``model``: the model object to update
|
532 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
533 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
534 |
+
|
535 |
+
Returns:
|
536 |
+
- ``model`: modified model
|
537 |
+
|
538 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
539 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
540 |
+
conveniently placed for you in the checkpoint folder.
|
541 |
+
|
542 |
+
A typical usage might be ::
|
543 |
+
|
544 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
545 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
546 |
+
# submit to model hub or save the model to share with others
|
547 |
+
|
548 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
549 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
550 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
551 |
+
|
552 |
+
"""
|
553 |
+
logger.info(f"Extracting fp32 weights")
|
554 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
555 |
+
|
556 |
+
logger.info(f"Overwriting model with fp32 weights")
|
557 |
+
model = model.cpu()
|
558 |
+
model.load_state_dict(state_dict, strict=False)
|
559 |
+
|
560 |
+
return model
|
561 |
+
|
562 |
+
|
563 |
+
if __name__ == "__main__":
|
564 |
+
|
565 |
+
parser = argparse.ArgumentParser()
|
566 |
+
parser.add_argument("checkpoint_dir",
|
567 |
+
type=str,
|
568 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
569 |
+
parser.add_argument(
|
570 |
+
"output_file",
|
571 |
+
type=str,
|
572 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
573 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
574 |
+
args = parser.parse_args()
|
575 |
+
|
576 |
+
debug = args.debug
|
577 |
+
|
578 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|