|
|
|
r"""Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/wrappers.py # noqa: E501
|
|
|
|
Wrap some nn modules to support empty tensor input. Currently, these wrappers
|
|
are mainly used in mask heads like fcn_mask_head and maskiou_heads since mask
|
|
heads are trained on only positive RoIs.
|
|
"""
|
|
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn.modules.utils import _pair, _triple
|
|
|
|
from .registry import CONV_LAYERS, UPSAMPLE_LAYERS
|
|
|
|
if torch.__version__ == 'parrots':
|
|
TORCH_VERSION = torch.__version__
|
|
else:
|
|
|
|
|
|
TORCH_VERSION = tuple(int(x) for x in torch.__version__.split('.')[:2])
|
|
|
|
|
|
def obsolete_torch_version(torch_version, version_threshold):
|
|
return torch_version == 'parrots' or torch_version <= version_threshold
|
|
|
|
|
|
class NewEmptyTensorOp(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx, x, new_shape):
|
|
ctx.shape = x.shape
|
|
return x.new_empty(new_shape)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad):
|
|
shape = ctx.shape
|
|
return NewEmptyTensorOp.apply(grad, shape), None
|
|
|
|
|
|
@CONV_LAYERS.register_module('Conv', force=True)
|
|
class Conv2d(nn.Conv2d):
|
|
|
|
def forward(self, x):
|
|
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
|
|
out_shape = [x.shape[0], self.out_channels]
|
|
for i, k, p, s, d in zip(x.shape[-2:], self.kernel_size,
|
|
self.padding, self.stride, self.dilation):
|
|
o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1
|
|
out_shape.append(o)
|
|
empty = NewEmptyTensorOp.apply(x, out_shape)
|
|
if self.training:
|
|
|
|
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
|
|
return empty + dummy
|
|
else:
|
|
return empty
|
|
|
|
return super().forward(x)
|
|
|
|
|
|
@CONV_LAYERS.register_module('Conv3d', force=True)
|
|
class Conv3d(nn.Conv3d):
|
|
|
|
def forward(self, x):
|
|
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
|
|
out_shape = [x.shape[0], self.out_channels]
|
|
for i, k, p, s, d in zip(x.shape[-3:], self.kernel_size,
|
|
self.padding, self.stride, self.dilation):
|
|
o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1
|
|
out_shape.append(o)
|
|
empty = NewEmptyTensorOp.apply(x, out_shape)
|
|
if self.training:
|
|
|
|
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
|
|
return empty + dummy
|
|
else:
|
|
return empty
|
|
|
|
return super().forward(x)
|
|
|
|
|
|
@CONV_LAYERS.register_module()
|
|
@CONV_LAYERS.register_module('deconv')
|
|
@UPSAMPLE_LAYERS.register_module('deconv', force=True)
|
|
class ConvTranspose2d(nn.ConvTranspose2d):
|
|
|
|
def forward(self, x):
|
|
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
|
|
out_shape = [x.shape[0], self.out_channels]
|
|
for i, k, p, s, d, op in zip(x.shape[-2:], self.kernel_size,
|
|
self.padding, self.stride,
|
|
self.dilation, self.output_padding):
|
|
out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op)
|
|
empty = NewEmptyTensorOp.apply(x, out_shape)
|
|
if self.training:
|
|
|
|
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
|
|
return empty + dummy
|
|
else:
|
|
return empty
|
|
|
|
return super().forward(x)
|
|
|
|
|
|
@CONV_LAYERS.register_module()
|
|
@CONV_LAYERS.register_module('deconv3d')
|
|
@UPSAMPLE_LAYERS.register_module('deconv3d', force=True)
|
|
class ConvTranspose3d(nn.ConvTranspose3d):
|
|
|
|
def forward(self, x):
|
|
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
|
|
out_shape = [x.shape[0], self.out_channels]
|
|
for i, k, p, s, d, op in zip(x.shape[-3:], self.kernel_size,
|
|
self.padding, self.stride,
|
|
self.dilation, self.output_padding):
|
|
out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op)
|
|
empty = NewEmptyTensorOp.apply(x, out_shape)
|
|
if self.training:
|
|
|
|
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
|
|
return empty + dummy
|
|
else:
|
|
return empty
|
|
|
|
return super().forward(x)
|
|
|
|
|
|
class MaxPool2d(nn.MaxPool2d):
|
|
|
|
def forward(self, x):
|
|
|
|
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)):
|
|
out_shape = list(x.shape[:2])
|
|
for i, k, p, s, d in zip(x.shape[-2:], _pair(self.kernel_size),
|
|
_pair(self.padding), _pair(self.stride),
|
|
_pair(self.dilation)):
|
|
o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1
|
|
o = math.ceil(o) if self.ceil_mode else math.floor(o)
|
|
out_shape.append(o)
|
|
empty = NewEmptyTensorOp.apply(x, out_shape)
|
|
return empty
|
|
|
|
return super().forward(x)
|
|
|
|
|
|
class MaxPool3d(nn.MaxPool3d):
|
|
|
|
def forward(self, x):
|
|
|
|
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)):
|
|
out_shape = list(x.shape[:2])
|
|
for i, k, p, s, d in zip(x.shape[-3:], _triple(self.kernel_size),
|
|
_triple(self.padding),
|
|
_triple(self.stride),
|
|
_triple(self.dilation)):
|
|
o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1
|
|
o = math.ceil(o) if self.ceil_mode else math.floor(o)
|
|
out_shape.append(o)
|
|
empty = NewEmptyTensorOp.apply(x, out_shape)
|
|
return empty
|
|
|
|
return super().forward(x)
|
|
|
|
|
|
class Linear(torch.nn.Linear):
|
|
|
|
def forward(self, x):
|
|
|
|
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 5)):
|
|
out_shape = [x.shape[0], self.out_features]
|
|
empty = NewEmptyTensorOp.apply(x, out_shape)
|
|
if self.training:
|
|
|
|
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
|
|
return empty + dummy
|
|
else:
|
|
return empty
|
|
|
|
return super().forward(x)
|
|
|