|
|
|
import numpy as np
|
|
|
|
import annotator.uniformer.mmcv as mmcv
|
|
|
|
try:
|
|
import torch
|
|
except ImportError:
|
|
torch = None
|
|
|
|
|
|
def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
|
|
"""Convert tensor to 3-channel images.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): Tensor that contains multiple images, shape (
|
|
N, C, H, W).
|
|
mean (tuple[float], optional): Mean of images. Defaults to (0, 0, 0).
|
|
std (tuple[float], optional): Standard deviation of images.
|
|
Defaults to (1, 1, 1).
|
|
to_rgb (bool, optional): Whether the tensor was converted to RGB
|
|
format in the first place. If so, convert it back to BGR.
|
|
Defaults to True.
|
|
|
|
Returns:
|
|
list[np.ndarray]: A list that contains multiple images.
|
|
"""
|
|
|
|
if torch is None:
|
|
raise RuntimeError('pytorch is not installed')
|
|
assert torch.is_tensor(tensor) and tensor.ndim == 4
|
|
assert len(mean) == 3
|
|
assert len(std) == 3
|
|
|
|
num_imgs = tensor.size(0)
|
|
mean = np.array(mean, dtype=np.float32)
|
|
std = np.array(std, dtype=np.float32)
|
|
imgs = []
|
|
for img_id in range(num_imgs):
|
|
img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0)
|
|
img = mmcv.imdenormalize(
|
|
img, mean, std, to_bgr=to_rgb).astype(np.uint8)
|
|
imgs.append(np.ascontiguousarray(img))
|
|
return imgs
|
|
|