|
import collections
|
|
|
|
from annotator.uniformer.mmcv.utils import build_from_cfg
|
|
|
|
from ..builder import PIPELINES
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class Compose(object):
|
|
"""Compose multiple transforms sequentially.
|
|
|
|
Args:
|
|
transforms (Sequence[dict | callable]): Sequence of transform object or
|
|
config dict to be composed.
|
|
"""
|
|
|
|
def __init__(self, transforms):
|
|
assert isinstance(transforms, collections.abc.Sequence)
|
|
self.transforms = []
|
|
for transform in transforms:
|
|
if isinstance(transform, dict):
|
|
transform = build_from_cfg(transform, PIPELINES)
|
|
self.transforms.append(transform)
|
|
elif callable(transform):
|
|
self.transforms.append(transform)
|
|
else:
|
|
raise TypeError('transform must be callable or a dict')
|
|
|
|
def __call__(self, data):
|
|
"""Call function to apply transforms sequentially.
|
|
|
|
Args:
|
|
data (dict): A result dict contains the data to transform.
|
|
|
|
Returns:
|
|
dict: Transformed data.
|
|
"""
|
|
|
|
for t in self.transforms:
|
|
data = t(data)
|
|
if data is None:
|
|
return None
|
|
return data
|
|
|
|
def __repr__(self):
|
|
format_string = self.__class__.__name__ + '('
|
|
for t in self.transforms:
|
|
format_string += '\n'
|
|
format_string += f' {t}'
|
|
format_string += '\n)'
|
|
return format_string
|
|
|