|
import os.path as osp
|
|
|
|
import annotator.uniformer.mmcv as mmcv
|
|
import numpy as np
|
|
|
|
from ..builder import PIPELINES
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class LoadImageFromFile(object):
|
|
"""Load an image from file.
|
|
|
|
Required keys are "img_prefix" and "img_info" (a dict that must contain the
|
|
key "filename"). Added or updated keys are "filename", "img", "img_shape",
|
|
"ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`),
|
|
"scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1).
|
|
|
|
Args:
|
|
to_float32 (bool): Whether to convert the loaded image to a float32
|
|
numpy array. If set to False, the loaded image is an uint8 array.
|
|
Defaults to False.
|
|
color_type (str): The flag argument for :func:`mmcv.imfrombytes`.
|
|
Defaults to 'color'.
|
|
file_client_args (dict): Arguments to instantiate a FileClient.
|
|
See :class:`mmcv.fileio.FileClient` for details.
|
|
Defaults to ``dict(backend='disk')``.
|
|
imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default:
|
|
'cv2'
|
|
"""
|
|
|
|
def __init__(self,
|
|
to_float32=False,
|
|
color_type='color',
|
|
file_client_args=dict(backend='disk'),
|
|
imdecode_backend='cv2'):
|
|
self.to_float32 = to_float32
|
|
self.color_type = color_type
|
|
self.file_client_args = file_client_args.copy()
|
|
self.file_client = None
|
|
self.imdecode_backend = imdecode_backend
|
|
|
|
def __call__(self, results):
|
|
"""Call functions to load image and get image meta information.
|
|
|
|
Args:
|
|
results (dict): Result dict from :obj:`mmseg.CustomDataset`.
|
|
|
|
Returns:
|
|
dict: The dict contains loaded image and meta information.
|
|
"""
|
|
|
|
if self.file_client is None:
|
|
self.file_client = mmcv.FileClient(**self.file_client_args)
|
|
|
|
if results.get('img_prefix') is not None:
|
|
filename = osp.join(results['img_prefix'],
|
|
results['img_info']['filename'])
|
|
else:
|
|
filename = results['img_info']['filename']
|
|
img_bytes = self.file_client.get(filename)
|
|
img = mmcv.imfrombytes(
|
|
img_bytes, flag=self.color_type, backend=self.imdecode_backend)
|
|
if self.to_float32:
|
|
img = img.astype(np.float32)
|
|
|
|
results['filename'] = filename
|
|
results['ori_filename'] = results['img_info']['filename']
|
|
results['img'] = img
|
|
results['img_shape'] = img.shape
|
|
results['ori_shape'] = img.shape
|
|
|
|
results['pad_shape'] = img.shape
|
|
results['scale_factor'] = 1.0
|
|
num_channels = 1 if len(img.shape) < 3 else img.shape[2]
|
|
results['img_norm_cfg'] = dict(
|
|
mean=np.zeros(num_channels, dtype=np.float32),
|
|
std=np.ones(num_channels, dtype=np.float32),
|
|
to_rgb=False)
|
|
return results
|
|
|
|
def __repr__(self):
|
|
repr_str = self.__class__.__name__
|
|
repr_str += f'(to_float32={self.to_float32},'
|
|
repr_str += f"color_type='{self.color_type}',"
|
|
repr_str += f"imdecode_backend='{self.imdecode_backend}')"
|
|
return repr_str
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class LoadAnnotations(object):
|
|
"""Load annotations for semantic segmentation.
|
|
|
|
Args:
|
|
reduce_zero_label (bool): Whether reduce all label value by 1.
|
|
Usually used for datasets where 0 is background label.
|
|
Default: False.
|
|
file_client_args (dict): Arguments to instantiate a FileClient.
|
|
See :class:`mmcv.fileio.FileClient` for details.
|
|
Defaults to ``dict(backend='disk')``.
|
|
imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default:
|
|
'pillow'
|
|
"""
|
|
|
|
def __init__(self,
|
|
reduce_zero_label=False,
|
|
file_client_args=dict(backend='disk'),
|
|
imdecode_backend='pillow'):
|
|
self.reduce_zero_label = reduce_zero_label
|
|
self.file_client_args = file_client_args.copy()
|
|
self.file_client = None
|
|
self.imdecode_backend = imdecode_backend
|
|
|
|
def __call__(self, results):
|
|
"""Call function to load multiple types annotations.
|
|
|
|
Args:
|
|
results (dict): Result dict from :obj:`mmseg.CustomDataset`.
|
|
|
|
Returns:
|
|
dict: The dict contains loaded semantic segmentation annotations.
|
|
"""
|
|
|
|
if self.file_client is None:
|
|
self.file_client = mmcv.FileClient(**self.file_client_args)
|
|
|
|
if results.get('seg_prefix', None) is not None:
|
|
filename = osp.join(results['seg_prefix'],
|
|
results['ann_info']['seg_map'])
|
|
else:
|
|
filename = results['ann_info']['seg_map']
|
|
img_bytes = self.file_client.get(filename)
|
|
gt_semantic_seg = mmcv.imfrombytes(
|
|
img_bytes, flag='unchanged',
|
|
backend=self.imdecode_backend).squeeze().astype(np.uint8)
|
|
|
|
if results.get('label_map', None) is not None:
|
|
for old_id, new_id in results['label_map'].items():
|
|
gt_semantic_seg[gt_semantic_seg == old_id] = new_id
|
|
|
|
if self.reduce_zero_label:
|
|
|
|
gt_semantic_seg[gt_semantic_seg == 0] = 255
|
|
gt_semantic_seg = gt_semantic_seg - 1
|
|
gt_semantic_seg[gt_semantic_seg == 254] = 255
|
|
results['gt_semantic_seg'] = gt_semantic_seg
|
|
results['seg_fields'].append('gt_semantic_seg')
|
|
return results
|
|
|
|
def __repr__(self):
|
|
repr_str = self.__class__.__name__
|
|
repr_str += f'(reduce_zero_label={self.reduce_zero_label},'
|
|
repr_str += f"imdecode_backend='{self.imdecode_backend}')"
|
|
return repr_str
|
|
|