File size: 2,648 Bytes
06b59a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: apache-2.0
base_model: google/flan-t5-large
tags:
- generated_from_trainer
metrics:
- rouge
- f1
- recall
- precision
model-index:
- name: KGQA-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# KGQA-1
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0784
- Rouge1: 72.8963
- Rouge2: 60.8929
- Rougel: 69.6657
- Rougelsum: 72.9329
- Gen Len: 4.8819
- F1: 0.7593
- Recall: 0.7681
- Precision: 0.7508
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | F1 | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:------:|:------:|:---------:|
| 2.8587 | 1.0 | 598 | 2.2931 | 49.5203 | 26.8249 | 43.3252 | 49.5005 | 4.6943 | 0.5633 | 0.5546 | 0.5723 |
| 1.7685 | 2.0 | 1196 | 1.6857 | 52.6345 | 31.7615 | 46.5617 | 52.5831 | 4.7965 | 0.619 | 0.6295 | 0.6088 |
| 0.8979 | 3.0 | 1794 | 1.3095 | 65.3839 | 49.1969 | 60.9907 | 65.2835 | 4.8928 | 0.6898 | 0.6806 | 0.6992 |
| 0.4881 | 4.0 | 2392 | 1.4524 | 68.0576 | 53.7819 | 64.3964 | 67.9986 | 4.835 | 0.7239 | 0.7106 | 0.7378 |
| 1.2094 | 5.0 | 2990 | 3.2070 | 18.934 | 4.1916 | 14.7003 | 18.9198 | 6.0159 | 0.0005 | 0.001 | 0.0003 |
| 0.7018 | 6.0 | 3588 | 1.3772 | 68.1255 | 54.2242 | 64.3339 | 68.1513 | 4.7588 | 0.7125 | 0.69 | 0.7366 |
| 0.3275 | 7.0 | 4186 | 1.5585 | 72.2516 | 60.2665 | 68.9117 | 72.2482 | 4.9246 | 0.7643 | 0.7827 | 0.7468 |
| 0.112 | 8.0 | 4784 | 2.0784 | 72.8963 | 60.8929 | 69.6657 | 72.9329 | 4.8819 | 0.7593 | 0.7681 | 0.7508 |
### Framework versions
- Transformers 4.43.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|