File size: 2,648 Bytes
06b59a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
base_model: google/flan-t5-large
tags:
- generated_from_trainer
metrics:
- rouge
- f1
- recall
- precision
model-index:
- name: KGQA-1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# KGQA-1

This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0784
- Rouge1: 72.8963
- Rouge2: 60.8929
- Rougel: 69.6657
- Rougelsum: 72.9329
- Gen Len: 4.8819
- F1: 0.7593
- Recall: 0.7681
- Precision: 0.7508

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len | F1     | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:------:|:------:|:---------:|
| 2.8587        | 1.0   | 598  | 2.2931          | 49.5203 | 26.8249 | 43.3252 | 49.5005   | 4.6943  | 0.5633 | 0.5546 | 0.5723    |
| 1.7685        | 2.0   | 1196 | 1.6857          | 52.6345 | 31.7615 | 46.5617 | 52.5831   | 4.7965  | 0.619  | 0.6295 | 0.6088    |
| 0.8979        | 3.0   | 1794 | 1.3095          | 65.3839 | 49.1969 | 60.9907 | 65.2835   | 4.8928  | 0.6898 | 0.6806 | 0.6992    |
| 0.4881        | 4.0   | 2392 | 1.4524          | 68.0576 | 53.7819 | 64.3964 | 67.9986   | 4.835   | 0.7239 | 0.7106 | 0.7378    |
| 1.2094        | 5.0   | 2990 | 3.2070          | 18.934  | 4.1916  | 14.7003 | 18.9198   | 6.0159  | 0.0005 | 0.001  | 0.0003    |
| 0.7018        | 6.0   | 3588 | 1.3772          | 68.1255 | 54.2242 | 64.3339 | 68.1513   | 4.7588  | 0.7125 | 0.69   | 0.7366    |
| 0.3275        | 7.0   | 4186 | 1.5585          | 72.2516 | 60.2665 | 68.9117 | 72.2482   | 4.9246  | 0.7643 | 0.7827 | 0.7468    |
| 0.112         | 8.0   | 4784 | 2.0784          | 72.8963 | 60.8929 | 69.6657 | 72.9329   | 4.8819  | 0.7593 | 0.7681 | 0.7508    |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1