wesam266 commited on
Commit
738cc7d
·
1 Parent(s): e7b2fc6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -0
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-large-xlsr-53_english
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-large-xlsr-53_english
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.2620
18
+ - Wer: 0.1916
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0005
38
+ - train_batch_size: 32
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 2
42
+ - total_train_batch_size: 64
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 500
46
+ - num_epochs: 5
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
53
+ | 3.0506 | 0.12 | 250 | 3.0206 | 0.9999 |
54
+ | 1.4381 | 0.25 | 500 | 1.0267 | 0.6323 |
55
+ | 1.0903 | 0.37 | 750 | 0.5841 | 0.3704 |
56
+ | 1.0384 | 0.5 | 1000 | 0.5156 | 0.3348 |
57
+ | 0.9658 | 0.62 | 1250 | 0.4721 | 0.3221 |
58
+ | 0.9184 | 0.74 | 1500 | 0.4301 | 0.3213 |
59
+ | 0.8939 | 0.87 | 1750 | 0.4188 | 0.2884 |
60
+ | 0.9051 | 0.99 | 2000 | 0.3852 | 0.2807 |
61
+ | 0.563 | 1.12 | 2250 | 0.3752 | 0.2804 |
62
+ | 0.6122 | 1.24 | 2500 | 0.3745 | 0.2732 |
63
+ | 0.6213 | 1.36 | 2750 | 0.3671 | 0.2575 |
64
+ | 0.5839 | 1.49 | 3000 | 0.3560 | 0.2578 |
65
+ | 0.615 | 1.61 | 3250 | 0.3555 | 0.2536 |
66
+ | 0.5557 | 1.74 | 3500 | 0.3511 | 0.2485 |
67
+ | 0.5497 | 1.86 | 3750 | 0.3364 | 0.2425 |
68
+ | 0.5412 | 1.98 | 4000 | 0.3253 | 0.2418 |
69
+ | 0.2834 | 2.11 | 4250 | 0.3293 | 0.2322 |
70
+ | 0.2723 | 2.23 | 4500 | 0.3157 | 0.2322 |
71
+ | 0.2713 | 2.35 | 4750 | 0.3148 | 0.2304 |
72
+ | 0.2878 | 2.48 | 5000 | 0.3143 | 0.2286 |
73
+ | 0.2776 | 2.6 | 5250 | 0.3122 | 0.2250 |
74
+ | 0.2553 | 2.73 | 5500 | 0.3003 | 0.2234 |
75
+ | 0.278 | 2.85 | 5750 | 0.2973 | 0.2198 |
76
+ | 0.2445 | 2.97 | 6000 | 0.2938 | 0.2180 |
77
+ | 0.4361 | 3.1 | 6250 | 0.2914 | 0.2132 |
78
+ | 0.3979 | 3.22 | 6500 | 0.2916 | 0.2125 |
79
+ | 0.4221 | 3.35 | 6750 | 0.2879 | 0.2113 |
80
+ | 0.4051 | 3.47 | 7000 | 0.2819 | 0.2100 |
81
+ | 0.4218 | 3.59 | 7250 | 0.2812 | 0.2072 |
82
+ | 0.4201 | 3.72 | 7500 | 0.2772 | 0.2055 |
83
+ | 0.3515 | 3.84 | 7750 | 0.2747 | 0.2031 |
84
+ | 0.4021 | 3.97 | 8000 | 0.2702 | 0.2018 |
85
+ | 0.4304 | 4.09 | 8250 | 0.2721 | 0.2007 |
86
+ | 0.3923 | 4.21 | 8500 | 0.2689 | 0.1991 |
87
+ | 0.3824 | 4.34 | 8750 | 0.2692 | 0.1980 |
88
+ | 0.3743 | 4.46 | 9000 | 0.2718 | 0.1950 |
89
+ | 0.3771 | 4.59 | 9250 | 0.2653 | 0.1950 |
90
+ | 0.4048 | 4.71 | 9500 | 0.2649 | 0.1934 |
91
+ | 0.3539 | 4.83 | 9750 | 0.2638 | 0.1919 |
92
+ | 0.3498 | 4.96 | 10000 | 0.2620 | 0.1916 |
93
+
94
+
95
+ ### Framework versions
96
+
97
+ - Transformers 4.11.3
98
+ - Pytorch 1.10.1+cu113
99
+ - Datasets 1.17.0
100
+ - Tokenizers 0.10.3