File size: 2,234 Bytes
fa78634 9508030 fa78634 94ed194 fa78634 d490bb1 65d0828 fa78634 94ed194 fa78634 94ed194 fa78634 9508030 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
language:
- ca
license: mit
base_model: microsoft/speecht5_tts
tags:
- TTS
- generated_from_trainer
- text-to-speech
datasets:
- openslr
model-index:
- name: SpeechT5 TTS Catalan
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SpeechT5 TTS Catalan
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the OpenSLR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4360
## Model description
This model was trained using the instructions provided on this [notebook](https://colab.research.google.com/drive/1i7I5pzBcU3WDFarDnzweIj4-sVVoIUFJ)
but using the catalan subset of OpenSLR dataset. The main change is the use of trimming to delete large parts of silence that this
dataset originally have. You can check the notebook used for this training [here](https://colab.research.google.com/drive/1B4idPGWxtAftOft6I47UjOB_l1yoiXzn)
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.5039 | 8.37 | 1000 | 0.4530 |
| 0.4723 | 16.74 | 2000 | 0.4345 |
| 0.4583 | 25.1 | 3000 | 0.4316 |
| 0.4565 | 33.47 | 4000 | 0.4294 |
| 0.4363 | 41.84 | 5000 | 0.4329 |
| 0.446 | 50.21 | 6000 | 0.4331 |
| 0.4508 | 58.58 | 7000 | 0.4336 |
| 0.4529 | 66.95 | 8000 | 0.4360 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3 |