File size: 35,470 Bytes
61c49cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 |
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LLaMA model."""
import copy
import math
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from transformers.cache_utils import Cache, StaticCache
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.llama.modeling_llama import (
LLAMA_INPUTS_DOCSTRING,
LlamaAttention,
LlamaDecoderLayer,
LlamaForCausalLM,
LlamaModel,
LlamaPreTrainedModel,
_prepare_4d_causal_attention_mask_with_cache_position,
logger,
repeat_kv,
rotate_half,
)
from transformers.utils import add_start_docstrings_to_model_forward, is_flash_attn_greater_or_equal_2_10
from .cache_utils import AutoLayerCache, LayerCache
from .configuration_lckv import LCKVLlamaConfig
from .utils import IterStep, LayerTypeParser, flash_attention_forward
def apply_rotary(q, cos, sin, unsqueeze_dim=1):
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
return q_embed
class LCKVLlamaAttention(LlamaAttention):
"""
LCKV Attention may not need to initialize weights for the key and value projections.
"""
def __init__(self, config: LCKVLlamaConfig, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx)
self.layer_type = LayerTypeParser(config.layer_types)[layer_idx]
self.sliding_window = config.sliding_window if self.layer_type.use_sliding_window else None
# Some layers may not need to compute key-value pairs
if not self.layer_type.computes_kv:
del self.k_proj
del self.v_proj
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
cos, sin = position_embeddings
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
query_states = apply_rotary(query_states, cos, sin)
# compute key and value states
if self.layer_type.computes_kv:
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
key_states = apply_rotary(key_states, cos, sin)
if isinstance(past_key_value, Cache):
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
past_key_value.layer_set(self.layer_idx, key_states, value_states)
# get the cached key and value states
# if the layer attends to the top layers, there are two cases:
# 1. the query length is 1, in which case we will not do iterative updates. Therefore, the kv lacks the current
# query length and we need to fill it with zeros.
# 2. the query length is greater than 1, in which case we will do iterative updates and the kv will have the
# correct query length.
key_states, value_states = past_key_value.layer_get(
self.layer_type.attends_to,
zerofill=self.layer_type.attends_top and q_len == 1,
)
# handle GQA
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# diagonal mask from the right bottom corner
if self.config.force_nodiag or self.layer_type.attends_top:
kv_len = key_states.size(2)
mask = attn_weights.new_full((q_len, kv_len), torch.finfo(attn_weights.dtype).min)
mask = mask.tril(diagonal=kv_len - q_len).triu(diagonal=kv_len - q_len)
attn_weights = attn_weights + mask
# sliding window mask
if self.sliding_window:
kv_len = key_states.size(2)
mask = attn_weights.new_full((q_len, kv_len), torch.finfo(attn_weights.dtype).min)
mask = mask.tril(diagonal=kv_len - q_len - self.sliding_window)
attn_weights = attn_weights + mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class LCKVLlamaFlashAttention2(LCKVLlamaAttention):
"""
LCKV Attention may not need to initialize weights for the key and value projections.
"""
def __init__(self, config: LCKVLlamaConfig, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[LayerCache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
output_attentions = False
bsz, q_len, _ = hidden_states.size()
cos, sin = position_embeddings
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
query_states = apply_rotary(query_states, cos, sin)
# compute key and value states
if self.layer_type.computes_kv:
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
key_states = apply_rotary(key_states, cos, sin)
if isinstance(past_key_value, Cache):
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
past_key_value.layer_set(self.layer_idx, key_states, value_states)
# get the cached key and value states
# if the layer attends to the top layers, there are two cases:
# 1. the query length is 1, in which case we will not do iterative updates. Therefore, the kv lacks the current
# query length and we need to fill it with zeros.
# 2. the query length is greater than 1, in which case we will do iterative updates and the kv will have the
# correct query length.
key_states, value_states = past_key_value.layer_get(
self.layer_type.attends_to,
zerofill=self.layer_type.attends_top and q_len == 1,
)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=self.sliding_window,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
no_diag=(self.config.force_nodiag or self.layer_type.attends_top),
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
LCKV_LLAMA_ATTENTION_CLASSES = {
"eager": LCKVLlamaAttention,
"flash_attention_2": LCKVLlamaFlashAttention2,
}
class LCKVLlamaDecoderLayer(LlamaDecoderLayer):
def __init__(self, config: LCKVLlamaConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.self_attn = LCKV_LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
class LCKVLlamaPreTrainedModel(LlamaPreTrainedModel):
config_class = LCKVLlamaConfig
supports_gradient_checkpointing = False # not tested yet
_no_split_modules = ["LCKVLlamaDecoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = False
class LCKVLlamaModel(LCKVLlamaPreTrainedModel, LlamaModel):
def __init__(self, config: LCKVLlamaConfig):
LCKVLlamaPreTrainedModel.__init__(self, config)
LlamaModel.__init__(self, copy.deepcopy(config)) # copy config to avoid modifying the original
self.layers = nn.ModuleList([LCKVLlamaDecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)])
self.parser = LayerTypeParser(config.layer_types)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[LayerCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# build the cache object
if not isinstance(past_key_values, LayerCache):
placeholder = inputs_embeds.new_zeros(
inputs_embeds.shape[0],
self.config.num_key_value_heads,
1,
getattr(self.config, "head_dim", self.config.hidden_size // self.config.num_attention_heads)
)
if past_key_values is None:
past_key_values = LayerCache()
elif isinstance(past_key_values, Cache):
past_key_values = AutoLayerCache.from_cache(past_key_values)
else:
raise NotImplementedError("Only DynamicCache is supported for now.")
past_key_values.setup(placeholder)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if isinstance(past_key_values, Cache) else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# whether to forward sequentially
use_sequential = (
self.config.use_sequential
or inputs_embeds.shape[1] <= self.config.forward_passes + self.config.backward_passes
and self.parser.attends_top()
)
if use_sequential:
iteration_outputs = self._modeling_sequential(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
output_hidden_states=output_hidden_states,
)
else:
# initialize the cache
past_key_values.initialize(self.parser, inputs_embeds.shape[1])
# we need to do forward passes based on a plan if the input is a prompt
plan = self.parser.iteration_plan(self.config.forward_passes, self.config.backward_passes)
iteration_outputs = self._modeling_with_plan(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
output_hidden_states=output_hidden_states,
modeling_plan=plan,
)
hidden_states = iteration_outputs.last_hidden_state
all_hidden_states = iteration_outputs.hidden_states
all_self_attns = iteration_outputs.attentions
next_decoder_cache = iteration_outputs.past_key_values
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _iterate_layers(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[LayerCache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
output_hidden_states: Optional[bool] = False,
layer_slice: Optional[slice] = None,
) -> BaseModelOutputWithPast:
"""
Iterates over the layers of the model, calling each layer in turn.
"""
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
# layers to compute
if layer_slice is None:
layer_slice = slice(None)
for decoder_layer in self.layers[layer_slice]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
next_cache = next_decoder_cache if use_cache else None
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _modeling_with_plan(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[LayerCache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
output_hidden_states: Optional[bool] = False,
modeling_plan: List[IterStep] = None,
) -> BaseModelOutputWithPast:
"""
Given a plan, iteratively update the hidden states.
"""
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for step in modeling_plan:
end = len(self.layers) if step.layer_slice.stop is None else step.layer_slice.stop
iteration_func = self._iterate_layers if step.requires_grad else torch.no_grad()(self._iterate_layers)
if isinstance(past_key_values, Cache):
past_key_values._update = step.update
iteration_outputs = iteration_func(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
output_hidden_states=output_hidden_states,
layer_slice=step.layer_slice
)
# Update the hidden states cache
if step.update:
hidden_states = iteration_outputs.last_hidden_state
if output_hidden_states:
all_hidden_states = all_hidden_states[:end] + iteration_outputs.hidden_states
if output_attentions:
all_self_attns = all_self_attns[:end] + iteration_outputs.attentions
if use_cache:
next_decoder_cache = iteration_outputs.past_key_values
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _modeling_sequential(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[LayerCache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
output_hidden_states: Optional[bool] = False,
) -> BaseModelOutputWithPast:
"""
Sequentially update the hidden states, token by token.
"""
seq_len = hidden_states.shape[1]
last_hidden_state = []
all_hidden_states = []
all_self_attns = []
for i in range(seq_len):
m_hidden_states = hidden_states[:, i:i+1]
m_attention_mask = (
(attention_mask[:, : i + 1] if attention_mask.ndim == 2 else attention_mask[:, :, i : i + 1])
if attention_mask is not None
else None
)
m_position_ids = position_ids[:, i:i+1] if position_ids is not None else None
m_cache_position = cache_position[i:i+1] if cache_position is not None else None
m_position_embeddings = (
position_embeddings[0][:, i:i+1],
position_embeddings[1][:, i:i+1]
)
outputs = self._iterate_layers(
m_hidden_states,
attention_mask=m_attention_mask,
position_ids=m_position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=m_cache_position,
position_embeddings=m_position_embeddings,
output_hidden_states=output_hidden_states
)
last_hidden_state.append(outputs.last_hidden_state)
if output_hidden_states:
all_hidden_states.append(outputs.hidden_states)
if output_attentions:
all_self_attns.append(outputs.attentions)
if use_cache:
past_key_values = outputs.past_key_values
last_hidden_state = torch.cat(last_hidden_state, dim=1)
if output_hidden_states:
all_hidden_states = [
torch.cat([hs[i] for hs in all_hidden_states], dim=1) for i in range(len(all_hidden_states[0]))
]
if output_attentions:
# TODO: deal with attention outputs for non-flash-attention implmentations
all_self_attns = all_self_attns[-1]
return BaseModelOutputWithPast(
last_hidden_state=last_hidden_state,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
"""fix this function to handle layer cache"""
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if isinstance(past_key_values, Cache) else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_length()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
min_dtype=min_dtype,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
class LCKVLlamaForCausalLM(LCKVLlamaPreTrainedModel, LlamaForCausalLM):
def __init__(self, config):
LCKVLlamaPreTrainedModel.__init__(self, config)
LlamaForCausalLM.__init__(self, copy.deepcopy(config)) # copy config to avoid modifying the original
self.model = LCKVLlamaModel(config)
# Initialize weights and apply final processing
self.post_init()
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
num_logits_to_keep=None,
**kwargs,
):
"""fix this function to handle sink cache"""
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if isinstance(past_key_values, Cache):
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if isinstance(past_key_values, Cache):
if getattr(past_key_values, "build_position_ids_based_on_cache", False):
cur_cache_length = past_key_values.get_seq_length()
position_ids = position_ids[:, cur_cache_length :cur_cache_length + input_ids.shape[1]]
else:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
# The clone here is for the same reason as for `position_ids`.
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
device = model_inputs["inputs_embeds"].device
else:
batch_size, sequence_length = model_inputs["input_ids"].shape
device = model_inputs["input_ids"].device
dtype = self.lm_head.weight.dtype
min_dtype = torch.finfo(dtype).min
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_length(),
dtype=dtype,
device=device,
min_dtype=min_dtype,
cache_position=cache_position,
batch_size=batch_size,
)
if num_logits_to_keep is not None:
model_inputs["num_logits_to_keep"] = num_logits_to_keep
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
|