--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer model-index: - name: segmentation_model_50ep results: [] --- # segmentation_model_50ep This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0063 - Mean Iou: 0.9981 - Mean Accuracy: 1.0 - Overall Accuracy: 1.0 - Per Category Iou: [0.9980539089681099] - Per Category Accuracy: [1.0] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------:|:---------------------:| | 0.049 | 1.2195 | 100 | 0.0429 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.029 | 2.4390 | 200 | 0.0274 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0171 | 3.6585 | 300 | 0.0192 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0158 | 4.8780 | 400 | 0.0187 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.019 | 6.0976 | 500 | 0.0169 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.013 | 7.3171 | 600 | 0.0125 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0131 | 8.5366 | 700 | 0.0124 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0111 | 9.7561 | 800 | 0.0101 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0089 | 10.9756 | 900 | 0.0102 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0106 | 12.1951 | 1000 | 0.0088 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0093 | 13.4146 | 1100 | 0.0084 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0088 | 14.6341 | 1200 | 0.0079 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0084 | 15.8537 | 1300 | 0.0080 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0089 | 17.0732 | 1400 | 0.0077 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0087 | 18.2927 | 1500 | 0.0069 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0072 | 19.5122 | 1600 | 0.0075 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0087 | 20.7317 | 1700 | 0.0068 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0094 | 21.9512 | 1800 | 0.0070 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0074 | 23.1707 | 1900 | 0.0070 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0075 | 24.3902 | 2000 | 0.0069 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.007 | 25.6098 | 2100 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0053 | 26.8293 | 2200 | 0.0065 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0072 | 28.0488 | 2300 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0082 | 29.2683 | 2400 | 0.0065 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0065 | 30.4878 | 2500 | 0.0066 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0054 | 31.7073 | 2600 | 0.0065 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0079 | 32.9268 | 2700 | 0.0066 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.006 | 34.1463 | 2800 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0053 | 35.3659 | 2900 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0059 | 36.5854 | 3000 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0061 | 37.8049 | 3100 | 0.0066 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.007 | 39.0244 | 3200 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0058 | 40.2439 | 3300 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0055 | 41.4634 | 3400 | 0.0062 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0068 | 42.6829 | 3500 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0058 | 43.9024 | 3600 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0061 | 45.1220 | 3700 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.003 | 46.3415 | 3800 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0058 | 47.5610 | 3900 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.0087 | 48.7805 | 4000 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | | 0.006 | 50.0 | 4100 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.0 - Datasets 2.4.0 - Tokenizers 0.20.3