whyoke/segmentation_model_50ep_2
Browse files
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: nvidia/mit-b0
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: segmentation_model_50ep_2
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# segmentation_model_50ep_2
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0151
|
20 |
+
- Mean Iou: 0.4992
|
21 |
+
- Mean Accuracy: 0.5002
|
22 |
+
- Overall Accuracy: 0.9980
|
23 |
+
- Per Category Iou: [0.9979567074182948, 0.0004395926441497546]
|
24 |
+
- Per Category Accuracy: [0.9999017103951866, 0.00046175157765122367]
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 6e-05
|
44 |
+
- train_batch_size: 16
|
45 |
+
- eval_batch_size: 16
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 50
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|
54 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------------------------------:|:--------------------------------------------:|
|
55 |
+
| 0.0176 | 12.1951 | 1000 | 0.0153 | 0.4991 | 0.5001 | 0.9978 | [0.9978437819175541, 0.00041657987919183504] | [0.9997885648043022, 0.00046175157765122367] |
|
56 |
+
| 0.0173 | 24.3902 | 2000 | 0.0153 | 0.4991 | 0.5001 | 0.9978 | [0.9978095148690534, 0.0004100657472081357] | [0.999754230969827, 0.00046175157765122367] |
|
57 |
+
| 0.0144 | 36.5854 | 3000 | 0.0146 | 0.4991 | 0.5001 | 0.9980 | [0.9979986133831826, 0.00026932399676811203] | [0.9999440574585123, 0.00027705094659073417] |
|
58 |
+
| 0.0208 | 48.7805 | 4000 | 0.0151 | 0.4992 | 0.5002 | 0.9980 | [0.9979567074182948, 0.0004395926441497546] | [0.9999017103951866, 0.00046175157765122367] |
|
59 |
+
|
60 |
+
|
61 |
+
### Framework versions
|
62 |
+
|
63 |
+
- Transformers 4.46.3
|
64 |
+
- Pytorch 2.2.0
|
65 |
+
- Datasets 2.4.0
|
66 |
+
- Tokenizers 0.20.3
|