whyoke commited on
Commit
4ee853f
·
verified ·
1 Parent(s): 00b5a54

whyoke/segmentation_model_50ep_2

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: nvidia/mit-b0
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: segmentation_model_50ep_2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # segmentation_model_50ep_2
16
+
17
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0151
20
+ - Mean Iou: 0.4992
21
+ - Mean Accuracy: 0.5002
22
+ - Overall Accuracy: 0.9980
23
+ - Per Category Iou: [0.9979567074182948, 0.0004395926441497546]
24
+ - Per Category Accuracy: [0.9999017103951866, 0.00046175157765122367]
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 6e-05
44
+ - train_batch_size: 16
45
+ - eval_batch_size: 16
46
+ - seed: 42
47
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 50
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
54
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------------------------------:|:--------------------------------------------:|
55
+ | 0.0176 | 12.1951 | 1000 | 0.0153 | 0.4991 | 0.5001 | 0.9978 | [0.9978437819175541, 0.00041657987919183504] | [0.9997885648043022, 0.00046175157765122367] |
56
+ | 0.0173 | 24.3902 | 2000 | 0.0153 | 0.4991 | 0.5001 | 0.9978 | [0.9978095148690534, 0.0004100657472081357] | [0.999754230969827, 0.00046175157765122367] |
57
+ | 0.0144 | 36.5854 | 3000 | 0.0146 | 0.4991 | 0.5001 | 0.9980 | [0.9979986133831826, 0.00026932399676811203] | [0.9999440574585123, 0.00027705094659073417] |
58
+ | 0.0208 | 48.7805 | 4000 | 0.0151 | 0.4992 | 0.5002 | 0.9980 | [0.9979567074182948, 0.0004395926441497546] | [0.9999017103951866, 0.00046175157765122367] |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.46.3
64
+ - Pytorch 2.2.0
65
+ - Datasets 2.4.0
66
+ - Tokenizers 0.20.3