--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer model-index: - name: segmentation_model_50ep_2 results: [] --- # segmentation_model_50ep_2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0151 - Mean Iou: 0.4992 - Mean Accuracy: 0.5002 - Overall Accuracy: 0.9980 - Per Category Iou: [0.9979567074182948, 0.0004395926441497546] - Per Category Accuracy: [0.9999017103951866, 0.00046175157765122367] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------------------------------:|:--------------------------------------------:| | 0.0176 | 12.1951 | 1000 | 0.0153 | 0.4991 | 0.5001 | 0.9978 | [0.9978437819175541, 0.00041657987919183504] | [0.9997885648043022, 0.00046175157765122367] | | 0.0173 | 24.3902 | 2000 | 0.0153 | 0.4991 | 0.5001 | 0.9978 | [0.9978095148690534, 0.0004100657472081357] | [0.999754230969827, 0.00046175157765122367] | | 0.0144 | 36.5854 | 3000 | 0.0146 | 0.4991 | 0.5001 | 0.9980 | [0.9979986133831826, 0.00026932399676811203] | [0.9999440574585123, 0.00027705094659073417] | | 0.0208 | 48.7805 | 4000 | 0.0151 | 0.4992 | 0.5002 | 0.9980 | [0.9979567074182948, 0.0004395926441497546] | [0.9999017103951866, 0.00046175157765122367] | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.0 - Datasets 2.4.0 - Tokenizers 0.20.3