File size: 4,433 Bytes
713dc9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#%% PACKAGES & MODULES
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from inference import prepare_for_lwm
from input_preprocess import tokenizer
from lwm_model import lwm
import numpy as np

#%% PARAMETERS
n_epochs = 100
n_layers = 12
n_heads = 12
d_model = 64
d_ff = d_model * 4
d_k = d_model // n_heads
d_v = d_model // n_heads
dropout = 0.1
max_len = 129
element_length = 16
batch_size = 64
train_ratio = 0.7
val_ratio = 0.2
device = 'cuda' if torch.cuda.is_available() else 'cpu'

#%% PRE-TRAINING DATA GENERATION
# The following DeepMIMO scenarios are not enough for pre-training a 
# Transformer-based foundation model like LWM. Add more scenarios for 
# more effective pre-training. The instruction for reproducing the actual 
# dataset used for pre-training LWM can be found in the Huggingface forum.
scenario_names = np.array([
    "city_18_denver", "city_15_indianapolis", "city_19_oklahoma", 
    "city_12_fortworth", "city_11_santaclara", "city_7_sandiego"
])

scenario_idxs = np.array([0, 1, 2, 3, 4, 5])  
selected_scenario_names = scenario_names[scenario_idxs]

preprocessed_chs = tokenizer(
    selected_scenario_names=selected_scenario_names, 
    manual_data=None, 
    gen_raw=False) 

#%% DATALOADER
train_size = int(train_ratio * len(preprocessed_chs))
val_size = int(val_ratio * len(preprocessed_chs))
test_size = len(preprocessed_chs) - val_size - train_size

train_data, val_data, test_data = torch.utils.data.random_split(
    preprocessed_chs, [train_size, val_size, test_size]
)

train_loader = prepare_for_lwm(train_data, device, batch_size=batch_size, shuffle=True)
val_loader = prepare_for_lwm(val_data, device, batch_size=batch_size, shuffle=True)
test_loader = prepare_for_lwm(test_data, device, batch_size=batch_size, shuffle=True)

# %% Model
load_model = False

model = lwm()
model.to(device)

if load_model:
    model_name = 'models/pretrained_model.pth'
    model.load_state_dict(torch.load(model_name))
    print(f"Model loaded from {model_name}")
    
# Loss function
criterionMLM = nn.MSELoss()

# %% Optimizer and Scheduler
adaptive_lr = False

optimizer = optim.Adam(model.parameters(), lr=1e-4, weight_decay=1e-5)
scheduler = (
    optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min')
    if adaptive_lr
    else StepLR(optimizer, step_size=10, gamma=0.9)
)

# %% Training
training_loss = []
validation_loss = []

def train(model, dataloader, optimizer, scheduler=None, device="cuda"):

    model.train()
    running_loss = 0.0
    criterionMCM = nn.MSELoss()

    for idx, batch in enumerate(dataloader):
        input_ids = batch[0].to(device)
        masked_tokens = batch[1].to(device)
        masked_pos = batch[2].to(device)
        
        optimizer.zero_grad()
        
        logits_lm, _ = model(input_ids, masked_pos)
        loss_lm = criterionMCM(logits_lm, masked_tokens)
        loss = loss_lm / torch.var(masked_tokens) 
        
        loss.backward()
        optimizer.step()

        if scheduler is not None:
            scheduler.step()

        running_loss += loss.item()

    average_loss = running_loss / len(dataloader)

    return average_loss

def validate(model, dataloader, device="cuda"):
    model.eval()
    running_loss = 0.0
    criterionMCM = nn.MSELoss()

    with torch.no_grad():
        for idx, batch in enumerate(dataloader):
            input_ids = batch[0].to(device)
            masked_tokens = batch[1].to(device)
            masked_pos = batch[2].to(device)

            logits_lm, _ = model(input_ids, masked_pos)

            loss_lm = criterionMCM(logits_lm, masked_tokens)
            loss = loss_lm / torch.var(masked_tokens)  

            running_loss += loss.item()

    average_loss = running_loss / len(dataloader)

    return average_loss

# %% Training Loop
for epoch in range(n_epochs):
    print(f"Epoch {epoch + 1}/{n_epochs}")

    # Training step
    train_loss = train(model, train_loader, optimizer, scheduler, device)
    training_loss.append(train_loss)
    print(f"Training Loss: {train_loss:.4f}")

    # Validation step
    if val_loader is not None:
        val_loss = validate(model, val_loader, device)
        validation_loss.append(val_loss)
        print(f"Validation Loss: {val_loss:.4f}")