Upload tutorial.py
Browse files- tutorial.py +275 -0
tutorial.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
|
5 |
+
def clone_dataset_scenario(repo_url, model_repo_dir="./LWM", scenarios_dir="scenarios"):
|
6 |
+
"""
|
7 |
+
Clones all scenarios from a repository, ensuring all files (small and large) are downloaded.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
repo_url (str): URL of the Git repository
|
11 |
+
model_repo_dir (str): Path to the model repository
|
12 |
+
scenarios_dir (str): Directory name for storing scenarios
|
13 |
+
"""
|
14 |
+
current_dir = os.path.basename(os.getcwd())
|
15 |
+
if current_dir == "LWM":
|
16 |
+
model_repo_dir = "."
|
17 |
+
|
18 |
+
scenarios_path = os.path.join(model_repo_dir, scenarios_dir)
|
19 |
+
os.makedirs(scenarios_path, exist_ok=True)
|
20 |
+
|
21 |
+
original_dir = os.getcwd()
|
22 |
+
|
23 |
+
try:
|
24 |
+
if os.path.exists(scenarios_path):
|
25 |
+
shutil.rmtree(scenarios_path)
|
26 |
+
|
27 |
+
print("Cloning entire repository into temporary directory ...")
|
28 |
+
subprocess.run([
|
29 |
+
"git", "clone",
|
30 |
+
repo_url,
|
31 |
+
scenarios_path
|
32 |
+
], check=True)
|
33 |
+
|
34 |
+
os.chdir(scenarios_path)
|
35 |
+
|
36 |
+
print("Pulling all files using Git LFS ...")
|
37 |
+
subprocess.run(["git", "lfs", "install"], check=True)
|
38 |
+
subprocess.run(["git", "lfs", "pull"], check=True)
|
39 |
+
|
40 |
+
print(f"Successfully cloned all scenarios into {scenarios_path}")
|
41 |
+
|
42 |
+
except subprocess.CalledProcessError as e:
|
43 |
+
print(f"Error cloning scenarios: {str(e)}")
|
44 |
+
finally:
|
45 |
+
if os.path.exists(scenarios_path):
|
46 |
+
shutil.rmtree(scenarios_path)
|
47 |
+
os.chdir(original_dir)
|
48 |
+
#%%
|
49 |
+
model_repo_url = "https://huggingface.co/wi-lab/lwm"
|
50 |
+
model_repo_dir = "./LWM"
|
51 |
+
|
52 |
+
if not os.path.exists(model_repo_dir):
|
53 |
+
print(f"Cloning model repository from {model_repo_url}...")
|
54 |
+
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
|
55 |
+
#%%
|
56 |
+
import numpy as np
|
57 |
+
dataset_repo_url = "https://huggingface.co/datasets/wi-lab/lwm"
|
58 |
+
clone_dataset_scenario(dataset_repo_url, model_repo_dir)
|
59 |
+
#%%
|
60 |
+
if os.path.exists(model_repo_dir):
|
61 |
+
os.chdir(model_repo_dir)
|
62 |
+
print(f"Changed working directory to {os.getcwd()}")
|
63 |
+
else:
|
64 |
+
print(f"Directory {model_repo_dir} does not exist. Please check if the repository is cloned properly.")
|
65 |
+
#%%
|
66 |
+
from input_preprocess import tokenizer
|
67 |
+
from lwm_model import lwm
|
68 |
+
import torch
|
69 |
+
|
70 |
+
scenario_names = np.array([
|
71 |
+
"city_18_denver", "city_15_indianapolis", "city_19_oklahoma",
|
72 |
+
"city_12_fortworth", "city_11_santaclara", "city_7_sandiego"
|
73 |
+
])
|
74 |
+
scenario_idxs = np.array([0, 1, 2, 3, 4, 5])[3]
|
75 |
+
selected_scenario_names = scenario_names[scenario_idxs]
|
76 |
+
|
77 |
+
preprocessed_chs = tokenizer(
|
78 |
+
selected_scenario_names=selected_scenario_names,
|
79 |
+
manual_data=None,
|
80 |
+
gen_raw=True,
|
81 |
+
snr_db=None
|
82 |
+
)
|
83 |
+
|
84 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
85 |
+
print(f"Loading the LWM model on {device} ...")
|
86 |
+
model = lwm.from_pretrained(device=device)
|
87 |
+
#%%
|
88 |
+
from inference import lwm_inference, create_raw_dataset
|
89 |
+
input_types = ['cls_emb', 'channel_emb', 'raw']
|
90 |
+
selected_input_type = input_types[2]
|
91 |
+
|
92 |
+
if selected_input_type in ['cls_emb', 'channel_emb']:
|
93 |
+
dataset = lwm_inference(preprocessed_chs, selected_input_type, model, device)
|
94 |
+
else:
|
95 |
+
dataset = create_raw_dataset(preprocessed_chs, device)
|
96 |
+
#%%
|
97 |
+
from input_preprocess import create_labels
|
98 |
+
n_beams = 16
|
99 |
+
tasks = ['LoS/NLoS Classification', 'Beam Prediction']
|
100 |
+
task = tasks[0]
|
101 |
+
labels = create_labels(task, selected_scenario_names, n_beams=n_beams)
|
102 |
+
# %% Dimensionality Reduction Visualization
|
103 |
+
|
104 |
+
# Import the dimensionality reduction plotting function
|
105 |
+
from utils import plot_dimensionality_reduction
|
106 |
+
|
107 |
+
# Iterate over tasks (e.g., LoS/NLoS Classification, Beam Prediction)
|
108 |
+
for task in tasks:
|
109 |
+
|
110 |
+
# Create labels for the current task
|
111 |
+
labels = create_labels(task, selected_scenario_names, n_beams=n_beams)
|
112 |
+
|
113 |
+
# Iterate over input types (e.g., raw data or embeddings)
|
114 |
+
for input_type_idx, input_type in enumerate(input_types):
|
115 |
+
|
116 |
+
# Select the current input type
|
117 |
+
selected_input_type = input_types[input_type_idx]
|
118 |
+
|
119 |
+
# Prepare dataset based on input type
|
120 |
+
if selected_input_type in ['cls_emb', 'channel_emb']:
|
121 |
+
dataset = lwm_inference(
|
122 |
+
preprocessed_chs,
|
123 |
+
selected_input_type,
|
124 |
+
model,
|
125 |
+
device
|
126 |
+
)
|
127 |
+
else:
|
128 |
+
dataset = create_raw_dataset(preprocessed_chs, device)
|
129 |
+
|
130 |
+
# Plot dimensionality reduction for the dataset
|
131 |
+
plot_dimensionality_reduction(
|
132 |
+
dataset,
|
133 |
+
method='all', # Use all available dimensionality reduction methods
|
134 |
+
labels=labels, # Labels for visualization
|
135 |
+
task=task, # Current task (for title or labeling)
|
136 |
+
input_type=input_type # Current input type (for title or labeling)
|
137 |
+
)
|
138 |
+
|
139 |
+
#%% TRAINING
|
140 |
+
#%% TRAINING PARAMETERS
|
141 |
+
task = ['LoS/NLoS Classification', 'Beam Prediction'][0] # Select the task
|
142 |
+
n_trials = 10 # Number of trials for each configuration
|
143 |
+
num_classes = 2 if task == 'LoS/NLoS Classification' else n_beams # Set number of classes based on the task
|
144 |
+
input_types = ['raw', 'cls_emb'] # Types of input data
|
145 |
+
split_ratios = np.array([.005, .0075, .01, .015, .02, .03,
|
146 |
+
.05, .1, .25, .5, .8]) # Dataset split ratios
|
147 |
+
f1_scores = np.zeros((n_trials, len(input_types), len(split_ratios))) # Store F1 scores for each trial, input type, and split ratio
|
148 |
+
labels = create_labels(task, selected_scenario_names, n_beams=n_beams) # Create labels for the selected task
|
149 |
+
|
150 |
+
#%% TRAINING
|
151 |
+
from utils import get_data_loaders, FCN, train_model, plot_metrics
|
152 |
+
|
153 |
+
# Iterate over input types (e.g., raw data or embeddings)
|
154 |
+
for input_type_idx, input_type in enumerate(input_types):
|
155 |
+
|
156 |
+
# Prepare dataset based on input type
|
157 |
+
if input_type in ['cls_emb', 'channel_emb']:
|
158 |
+
dataset = lwm_inference(preprocessed_chs, input_type, model, device)
|
159 |
+
else:
|
160 |
+
dataset = create_raw_dataset(preprocessed_chs, device)
|
161 |
+
|
162 |
+
# Reshape dataset for training
|
163 |
+
dataset = dataset.view(dataset.size(0), -1)
|
164 |
+
input_dim = dataset.shape[-1] # Get input dimension for the model
|
165 |
+
|
166 |
+
# Iterate over different dataset split ratios
|
167 |
+
for split_ratio_idx, split_ratio in enumerate(split_ratios):
|
168 |
+
|
169 |
+
n_train = int(split_ratio * dataset.shape[0]) # Calculate number of training samples
|
170 |
+
|
171 |
+
# Run multiple trials for each split ratio
|
172 |
+
for trial in range(n_trials):
|
173 |
+
|
174 |
+
print(f"\ninput type: {input_type}, \nnumber of training samples: {int(split_ratio*len(dataset))}, \ntrial: {trial}\n")
|
175 |
+
|
176 |
+
torch.manual_seed(trial) # Set seed for reproducibility
|
177 |
+
train_loader, test_loader = get_data_loaders(
|
178 |
+
dataset,
|
179 |
+
labels,
|
180 |
+
batch_size=128,
|
181 |
+
split_ratio=split_ratio
|
182 |
+
)
|
183 |
+
|
184 |
+
# Initialize the Fully Connected Network (FCN) model
|
185 |
+
FCN_model = FCN(input_dim=input_dim, num_classes=num_classes)
|
186 |
+
|
187 |
+
# Train the model and retrieve losses and F1 scores
|
188 |
+
train_losses, test_f1_scores = train_model(
|
189 |
+
FCN_model,
|
190 |
+
train_loader,
|
191 |
+
test_loader,
|
192 |
+
epochs=120,
|
193 |
+
lr=0.0001 if input_type == "raw" else 0.001, # Learning rate depends on input type
|
194 |
+
device=device,
|
195 |
+
decay_step=30,
|
196 |
+
decay_rate=0.5
|
197 |
+
)
|
198 |
+
|
199 |
+
# Store the final F1 score for this trial
|
200 |
+
f1_scores[trial, input_type_idx, split_ratio_idx] = test_f1_scores[0, -1]
|
201 |
+
|
202 |
+
# Plot metrics for the current trial
|
203 |
+
# plot_metrics(test_f1_scores, [input_type])
|
204 |
+
|
205 |
+
# Plot average F1 scores across all trials for each input type and split ratio
|
206 |
+
plot_metrics(
|
207 |
+
np.mean(f1_scores, axis=0), # Average F1 scores across trials
|
208 |
+
input_types,
|
209 |
+
np.asarray(split_ratios * dataset.shape[0], dtype=int), # Convert split ratios to actual sample counts
|
210 |
+
flag=1
|
211 |
+
)
|
212 |
+
|
213 |
+
# %% Few-Shot Learning with Pretrained Embeddings
|
214 |
+
|
215 |
+
# Initialize array to store F1 scores for KNN classification
|
216 |
+
f1_scores_knn = np.zeros((n_trials, len(input_types), len(split_ratios)))
|
217 |
+
|
218 |
+
# Import the classification function
|
219 |
+
from utils import classify_by_euclidean_distance
|
220 |
+
|
221 |
+
# Iterate over input types (e.g., raw data or embeddings)
|
222 |
+
for input_type_idx, input_type in enumerate(input_types):
|
223 |
+
|
224 |
+
# Prepare dataset based on input type
|
225 |
+
if input_type in ['cls_emb', 'channel_emb']:
|
226 |
+
dataset = lwm_inference(preprocessed_chs, input_type, model, device)
|
227 |
+
else:
|
228 |
+
dataset = create_raw_dataset(preprocessed_chs, device)
|
229 |
+
|
230 |
+
# Reshape dataset for compatibility
|
231 |
+
dataset = dataset.view(dataset.size(0), -1)
|
232 |
+
input_dim = dataset.shape[-1] # Get input dimension
|
233 |
+
|
234 |
+
# Iterate over different dataset split ratios
|
235 |
+
for split_ratio_idx, split_ratio in enumerate(split_ratios):
|
236 |
+
|
237 |
+
n_train = int(split_ratio * dataset.shape[0]) # Calculate number of training samples
|
238 |
+
|
239 |
+
# Run multiple trials for each split ratio
|
240 |
+
for trial in range(n_trials):
|
241 |
+
|
242 |
+
torch.manual_seed(trial) # Set seed for reproducibility
|
243 |
+
train_loader, test_loader = get_data_loaders(
|
244 |
+
dataset,
|
245 |
+
labels,
|
246 |
+
batch_size=128,
|
247 |
+
split_ratio=split_ratio
|
248 |
+
)
|
249 |
+
|
250 |
+
# Perform classification using Euclidean distance
|
251 |
+
f1 = classify_by_euclidean_distance(
|
252 |
+
train_loader,
|
253 |
+
test_loader,
|
254 |
+
device="cpu"
|
255 |
+
)
|
256 |
+
|
257 |
+
# Store the F1 score for this trial
|
258 |
+
f1_scores_knn[trial, input_type_idx, split_ratio_idx] = f1
|
259 |
+
|
260 |
+
# Plot average F1 scores across all trials for each input type and split ratio
|
261 |
+
plot_metrics(
|
262 |
+
np.mean(f1_scores_knn, axis=0), # Average F1 scores across trials
|
263 |
+
input_types,
|
264 |
+
np.asarray(split_ratios * dataset.shape[0], dtype=int), # Convert split ratios to actual sample counts
|
265 |
+
flag=1
|
266 |
+
)
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
|