File size: 964 Bytes
9778ff0 e7075f5 9778ff0 e7075f5 ad90c3e e7075f5 9778ff0 e7075f5 9778ff0 e7075f5 9778ff0 e7075f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("willco-afk/my-model-name")
model = AutoModelForSequenceClassification.from_pretrained("willco-afk/my-model-name")
# Function to classify input text
def classify_text(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class = logits.argmax().item() # Get the predicted class
return f"Predicted class: {predicted_class}"
# Create a Gradio interface with customized layout
demo = gr.Interface(fn=classify_text,
inputs=gr.Textbox(label="Enter your text"),
outputs=gr.Textbox(label="Prediction"),
live=True) # This option allows live feedback as you type
# Launch the Gradio interface
demo.launch() |