willco-afk commited on
Commit
2b79ba5
·
verified ·
1 Parent(s): 8417e16

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -48
app.py DELETED
@@ -1,48 +0,0 @@
1
- import os
2
- import streamlit as st
3
- import tensorflow as tf
4
- from PIL import Image
5
- import numpy as np
6
- from huggingface_hub import login, hf_hub_download
7
-
8
- # Authenticate with Hugging Face token (if available)
9
- hf_token = os.environ.get("HF_TOKEN")
10
- if hf_token:
11
- login(token=hf_token)
12
-
13
- # Download and load the model from the Hugging Face Hub
14
- repo_id = os.environ.get("MODEL_ID", "willco-afk/tree-test-x") # Get repo ID from secret or default
15
- filename = "your_trained_model.keras" # Updated filename
16
- cache_dir = "./models" # Local directory to cache the model
17
- os.makedirs(cache_dir, exist_ok=True)
18
- model_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache_dir)
19
-
20
- # Load the model
21
- model = tf.keras.models.load_model(model_path)
22
-
23
- # Streamlit UI
24
- st.title("Christmas Tree Classifier")
25
- st.write("Upload an image of a Christmas tree to classify it:")
26
-
27
- uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
28
-
29
- if uploaded_file is not None:
30
- # Display the uploaded image
31
- image = Image.open(uploaded_file)
32
- st.image(image, caption="Uploaded Image.", use_column_width=True)
33
- st.write("")
34
- st.write("Classifying...")
35
-
36
- # Preprocess the image
37
- image = image.resize((224, 224)) # Resize to match your model's input size
38
- image_array = np.array(image) / 255.0 # Normalize pixel values
39
- image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
40
-
41
- # Make prediction
42
- prediction = model.predict(image_array)
43
-
44
- # Get predicted class
45
- predicted_class = "Decorated" if prediction[0][0] >= 0.5 else "Undecorated"
46
-
47
- # Display the prediction
48
- st.write(f"Prediction: {predicted_class}")