File size: 4,513 Bytes
f935bff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import os
import pandas as pd
import numpy as np
import joblib
import dill
from mastml.feature_generators import ElementalFeatureGenerator, OneHotGroupGenerator
def get_barrier(df_test):
d = 'model_perovskite_ASR/Barrier_model'
scaler = joblib.load(os.path.join(d, 'StandardScaler.pkl'))
model = joblib.load(os.path.join(d, 'RandomForestRegressor.pkl'))
df_features = pd.read_csv(os.path.join(d, 'X_train.csv'))
features = df_features.columns.tolist()
X_barrier = df_test[features]
X_barrier = scaler.transform(X_barrier)
barriers = model.predict(X_barrier)
return barriers
def get_preds_ebars_domains(df_test):
d = 'model_perovskite_ASR'
scaler = joblib.load(os.path.join(d, 'StandardScaler.pkl'))
model = joblib.load(os.path.join(d, 'RandomForestRegressor.pkl'))
df_features = pd.read_csv(os.path.join(d, 'X_train.csv'))
recal_params = pd.read_csv(os.path.join(d, 'recal_dict.csv'))
features = df_features.columns.tolist()
df_test = df_test[features]
X = scaler.transform(df_test)
# Make predictions
preds = model.predict(X)
# Get ebars and recalibrate them
errs_list = list()
a = recal_params['a'][0]
b = recal_params['b'][0]
for i, x in X.iterrows():
preds_list = list()
for pred in model.model.estimators_:
preds_list.append(pred.predict(np.array(x).reshape(1, -1))[0])
errs_list.append(np.std(preds_list))
ebars = a * np.array(errs_list) + b
# Get domains
with open(os.path.join(d, 'model.dill'), 'rb') as f:
model_domain = dill.load(f)
domains = model_domain.predict(X)
return preds, ebars, domains
def process_data(comp_list):
X = pd.DataFrame(np.empty((len(comp_list),)))
y = pd.DataFrame(np.empty((len(comp_list),)))
df_test = pd.DataFrame({'Material composition': comp_list})
# Try this both ways depending on mastml version used.
try:
X, y = ElementalFeatureGenerator(composition_df=df_test['Material composition'],
feature_types=['composition_avg', 'arithmetic_avg', 'max', 'min','difference'],
remove_constant_columns=False).evaluate(X=X, y=y, savepath=os.getcwd(), make_new_dir=False)
except:
X, y = ElementalFeatureGenerator(featurize_df=df_test['Material composition'],
feature_types=['composition_avg', 'arithmetic_avg', 'max', 'min',
'difference'], remove_constant_columns=False).evaluate(X=X, y=y, savepath=os.getcwd(), make_new_dir=False)
df_test = pd.concat([df_test, X], axis=1)
return df_test
def make_predictions(comp_list, elec_list):
# Process data
df_test = process_data(comp_list)
elec_cls_0 = list()
elec_cls_1 = list()
elec_cls_2 = list()
elec_cls_3 = list()
for elec in elec_list:
if elec == 'ceria':
elec_cls_0.append(1)
elec_cls_1.append(0)
elec_cls_2.append(0)
elec_cls_3.append(0)
elif elec == 'mixed':
elec_cls_0.append(0)
elec_cls_1.append(1)
elec_cls_2.append(0)
elec_cls_3.append(0)
elif elec == 'perovskite':
elec_cls_0.append(0)
elec_cls_1.append(0)
elec_cls_2.append(1)
elec_cls_3.append(0)
elif elec == 'zirconia':
elec_cls_0.append(0)
elec_cls_1.append(0)
elec_cls_2.append(0)
elec_cls_3.append(1)
else:
raise ValueError('Invalid electrolyte choice detected. Valid choices are "ceria", "mixed", "perovskite", "zirconia"')
df_test['Electrolyte class_0'] = elec_cls_0 # ceria
df_test['Electrolyte class_1'] = elec_cls_1 # mixed
df_test['Electrolyte class_2'] = elec_cls_2 # perovskite
df_test['Electrolyte class_3'] = elec_cls_3 # zirconia
barriers = get_barrier(df_test)
df_test['ML pred ASR barrier (eV)'] = barriers
# Get the ML predicted values
preds, ebars, domains = get_preds_ebars_domains(df_test)
pred_dict = {'Predicted log ASR at 500C (Ohm-cm2)': preds,
'Ebar log ASR at 500C (Ohm-cm2)': ebars}
for d in domains.columns.tolist():
pred_dict[d] = domains[d]
del pred_dict['y_pred']
#del pred_dict['d_pred']
del pred_dict['y_stdu_pred']
del pred_dict['y_stdc_pred']
return pd.DataFrame(pred_dict)
|