import os import pandas as pd import numpy as np import joblib import dill from mastml.feature_generators import ElementalFeatureGenerator, OneHotGroupGenerator def get_barrier(df_test): d = 'model_perovskite_ASR/Barrier_model' scaler = joblib.load(os.path.join(d, 'StandardScaler.pkl')) model = joblib.load(os.path.join(d, 'RandomForestRegressor.pkl')) df_features = pd.read_csv(os.path.join(d, 'X_train.csv')) features = df_features.columns.tolist() X_barrier = df_test[features] X_barrier = scaler.transform(X_barrier) barriers = model.predict(X_barrier) return barriers def get_preds_ebars_domains(df_test): d = 'model_perovskite_ASR' scaler = joblib.load(os.path.join(d, 'StandardScaler.pkl')) model = joblib.load(os.path.join(d, 'RandomForestRegressor.pkl')) df_features = pd.read_csv(os.path.join(d, 'X_train.csv')) recal_params = pd.read_csv(os.path.join(d, 'recal_dict.csv')) features = df_features.columns.tolist() df_test = df_test[features] X = scaler.transform(df_test) # Make predictions preds = model.predict(X) # Get ebars and recalibrate them errs_list = list() a = recal_params['a'][0] b = recal_params['b'][0] for i, x in X.iterrows(): preds_list = list() for pred in model.model.estimators_: preds_list.append(pred.predict(np.array(x).reshape(1, -1))[0]) errs_list.append(np.std(preds_list)) ebars = a * np.array(errs_list) + b # Get domains with open(os.path.join(d, 'model.dill'), 'rb') as f: model_domain = dill.load(f) domains = model_domain.predict(X) return preds, ebars, domains def process_data(comp_list): X = pd.DataFrame(np.empty((len(comp_list),))) y = pd.DataFrame(np.empty((len(comp_list),))) df_test = pd.DataFrame({'Material composition': comp_list}) # Try this both ways depending on mastml version used. try: X, y = ElementalFeatureGenerator(composition_df=df_test['Material composition'], feature_types=['composition_avg', 'arithmetic_avg', 'max', 'min','difference'], remove_constant_columns=False).evaluate(X=X, y=y, savepath=os.getcwd(), make_new_dir=False) except: X, y = ElementalFeatureGenerator(featurize_df=df_test['Material composition'], feature_types=['composition_avg', 'arithmetic_avg', 'max', 'min', 'difference'], remove_constant_columns=False).evaluate(X=X, y=y, savepath=os.getcwd(), make_new_dir=False) df_test = pd.concat([df_test, X], axis=1) return df_test def make_predictions(comp_list, elec_list): # Process data df_test = process_data(comp_list) elec_cls_0 = list() elec_cls_1 = list() elec_cls_2 = list() elec_cls_3 = list() for elec in elec_list: if elec == 'ceria': elec_cls_0.append(1) elec_cls_1.append(0) elec_cls_2.append(0) elec_cls_3.append(0) elif elec == 'mixed': elec_cls_0.append(0) elec_cls_1.append(1) elec_cls_2.append(0) elec_cls_3.append(0) elif elec == 'perovskite': elec_cls_0.append(0) elec_cls_1.append(0) elec_cls_2.append(1) elec_cls_3.append(0) elif elec == 'zirconia': elec_cls_0.append(0) elec_cls_1.append(0) elec_cls_2.append(0) elec_cls_3.append(1) else: raise ValueError('Invalid electrolyte choice detected. Valid choices are "ceria", "mixed", "perovskite", "zirconia"') df_test['Electrolyte class_0'] = elec_cls_0 # ceria df_test['Electrolyte class_1'] = elec_cls_1 # mixed df_test['Electrolyte class_2'] = elec_cls_2 # perovskite df_test['Electrolyte class_3'] = elec_cls_3 # zirconia barriers = get_barrier(df_test) df_test['ML pred ASR barrier (eV)'] = barriers # Get the ML predicted values preds, ebars, domains = get_preds_ebars_domains(df_test) pred_dict = {'Predicted log ASR at 500C (Ohm-cm2)': preds, 'Ebar log ASR at 500C (Ohm-cm2)': ebars} for d in domains.columns.tolist(): pred_dict[d] = domains[d] del pred_dict['y_pred'] #del pred_dict['d_pred'] del pred_dict['y_stdu_pred'] del pred_dict['y_stdc_pred'] return pd.DataFrame(pred_dict)