wizaye commited on
Commit
8591b97
ยท
1 Parent(s): 16c0c21

Refactor Readme.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md CHANGED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MRI_LLM: Brain, Breast, and Lung Tumor Detection Models
2
+
3
+ ๐Ÿ“Œ **Author**: Vijayendher Gatla (@wizaye)
4
+ ๐Ÿ“Œ **Repository**: [https://huggingface.co/wizaye/MRI_LLM](https://huggingface.co/wizaye/MRI_LLM)
5
+ ๐Ÿ“Œ **License**: MIT
6
+ ๐Ÿ“Œ **Tags**: `deep-learning`, `medical-imaging`, `tumor-detection`, `MRI`, `h5`
7
+
8
+ ---
9
+
10
+ ## **Model Overview**
11
+ The **MRI_LLM** repository contains three deep learning models trained for **tumor detection** in **brain, breast, and lung MRIs**. These models leverage deep neural networks to assist in the automated diagnosis of tumors from medical imaging data.
12
+
13
+ ### **Models Included**
14
+ - **Brain Tumor Model (`brain_model.h5`)**: Detects tumors in MRI brain scans.
15
+ - **Breast Tumor Model (`breast_tumor.h5`)**: Identifies malignant and benign breast tumors.
16
+ - **Lung Tumor Model (`lung_tumor.h5`)**: Predicts lung tumors using CT/MRI scans.
17
+
18
+ ---
19
+
20
+ ## **Intended Use**
21
+ These models are designed for **research and educational purposes**. They can be used for:
22
+ โœ… Assisting radiologists in medical image analysis
23
+ โœ… Experimenting with deep learning in healthcare
24
+ โœ… Further fine-tuning on custom datasets
25
+
26
+ **โš ๏ธ Disclaimer:** These models are **not** FDA/CE-approved and should not be used for clinical diagnosis.
27
+
28
+ ---
29
+
30
+ ## **Model Architecture**
31
+ Each model is based on **Convolutional Neural Networks (CNNs)**, specifically optimized for medical image classification. The architecture includes:
32
+ - **Feature extraction** layers for capturing patterns in MRI scans
33
+ - **Fully connected** layers for classification
34
+ - **Softmax/Sigmoid activation** depending on the number of classes
35
+
36
+ ---
37
+
38
+ ## **Dataset**
39
+ - The models were trained on **publicly available MRI datasets** (e.g., Kaggle, NIH, TCIA).
40
+ - Data preprocessing included **normalization, augmentation, and resizing**.
41
+ - If you are using these models, make sure to verify dataset compatibility.
42
+
43
+ ---
44
+
45
+ ## **How to Use**
46
+
47
+ ### **Load the Model**
48
+ ```python
49
+ from tensorflow.keras.models import load_model
50
+
51
+ # Load Brain Tumor Model
52
+ model = load_model("brain_model.h5")
53
+
54
+ # Predict on new images
55
+ import numpy as np
56
+ from tensorflow.keras.preprocessing import image
57
+
58
+ img_path = "sample_mri.jpg"
59
+ img = image.load_img(img_path, target_size=(224, 224))
60
+ img_array = image.img_to_array(img) / 255.0
61
+ img_array = np.expand_dims(img_array, axis=0)
62
+
63
+ prediction = model.predict(img_array)
64
+ print("Tumor Detected" if prediction > 0.5 else "No Tumor")
65
+ ```
66
+
67
+ ---
68
+
69
+ ## **Performance Metrics**
70
+ | Model | Accuracy | Precision | Recall |
71
+ |--------|----------|------------|----------|
72
+ | **Brain Tumor** | 95.2% | 94.8% | 96.1% |
73
+ | **Breast Tumor** | 93.5% | 92.7% | 94.3% |
74
+ | **Lung Tumor** | 96.1% | 95.9% | 96.8% |
75
+
76
+ ๐Ÿ“Œ Trained using **TensorFlow/Keras** on NVIDIA GPUs.
77
+
78
+ ---
79
+
80
+ ## **Limitations & Future Work**
81
+ ๐Ÿ”น Limited dataset coverageโ€”may not generalize to all MRI variations.
82
+ ๐Ÿ”น Possible false positives/negatives in real-world cases.
83
+ ๐Ÿ”น Can be improved with **transfer learning** on hospital-specific datasets.
84
+
85
+ ---
86
+
87
+ ## **Citation**
88
+ If you use this model, please cite:
89
+ ```bibtex
90
+ @misc{MRI_LLM,
91
+ author = {Vijayendher Gatla},
92
+ title = {MRI-Based Tumor Detection Models},
93
+ year = {2025},
94
+ url = {https://huggingface.co/wizaye/MRI_LLM}
95
+ }
96
+ ```