wls04 commited on
Commit
0e1a431
·
verified ·
1 Parent(s): c5467a5

Upload model

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<eop>": 151334,
3
+ "<sop>": 151333,
4
+ "<|assistant|>": 151337,
5
+ "<|begin_of_image|>": 151339,
6
+ "<|begin_of_video|>": 151341,
7
+ "<|end_of_image|>": 151340,
8
+ "<|end_of_video|>": 151342,
9
+ "<|endoftext|>": 151329,
10
+ "<|observation|>": 151338,
11
+ "<|system|>": 151335,
12
+ "<|user|>": 151336,
13
+ "[MASK]": 151330,
14
+ "[gMASK]": 151331,
15
+ "[sMASK]": 151332
16
+ }
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bias_linear": false,
3
+ "add_qkv_bias": true,
4
+ "apply_query_key_layer_scaling": true,
5
+ "apply_residual_connection_post_layernorm": false,
6
+ "architectures": [
7
+ "ChatGLMForConditionalGeneration"
8
+ ],
9
+ "attention_dropout": 0.0,
10
+ "attention_softmax_in_fp32": true,
11
+ "auto_map": {
12
+ "AutoConfig": "configuration_chatglm.ChatGLMConfig",
13
+ "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
14
+ "AutoModelForCausalLM": "THUDM/glm-4-9b-chat--modeling_chatglm.ChatGLMForConditionalGeneration",
15
+ "AutoModelForSeq2SeqLM": "THUDM/glm-4-9b-chat--modeling_chatglm.ChatGLMForConditionalGeneration",
16
+ "AutoModelForSequenceClassification": "THUDM/glm-4-9b-chat--modeling_chatglm.ChatGLMForSequenceClassification"
17
+ },
18
+ "bias_dropout_fusion": true,
19
+ "classifier_dropout": null,
20
+ "eos_token_id": [
21
+ 151329,
22
+ 151336,
23
+ 151338
24
+ ],
25
+ "ffn_hidden_size": 13696,
26
+ "fp32_residual_connection": false,
27
+ "hidden_dropout": 0.0,
28
+ "hidden_size": 4096,
29
+ "kv_channels": 128,
30
+ "layernorm_epsilon": 1.5625e-07,
31
+ "model_type": "chatglm",
32
+ "multi_query_attention": true,
33
+ "multi_query_group_num": 2,
34
+ "num_attention_heads": 32,
35
+ "num_hidden_layers": 40,
36
+ "num_layers": 40,
37
+ "original_rope": true,
38
+ "pad_token_id": 151329,
39
+ "padded_vocab_size": 151552,
40
+ "post_layer_norm": true,
41
+ "rmsnorm": true,
42
+ "rope_ratio": 500,
43
+ "seq_length": 131072,
44
+ "tie_word_embeddings": false,
45
+ "torch_dtype": "float32",
46
+ "transformers_version": "4.51.3",
47
+ "use_cache": false,
48
+ "vocab_size": 151552
49
+ }
configuration_chatglm.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class ChatGLMConfig(PretrainedConfig):
5
+ model_type = "chatglm"
6
+
7
+ def __init__(
8
+ self,
9
+ num_layers=28,
10
+ padded_vocab_size=65024,
11
+ hidden_size=4096,
12
+ ffn_hidden_size=13696,
13
+ kv_channels=128,
14
+ num_attention_heads=32,
15
+ seq_length=2048,
16
+ hidden_dropout=0.0,
17
+ classifier_dropout=None,
18
+ attention_dropout=0.0,
19
+ layernorm_epsilon=1e-5,
20
+ rmsnorm=True,
21
+ apply_residual_connection_post_layernorm=False,
22
+ post_layer_norm=True,
23
+ add_bias_linear=False,
24
+ add_qkv_bias=False,
25
+ bias_dropout_fusion=True,
26
+ multi_query_attention=False,
27
+ multi_query_group_num=1,
28
+ rope_ratio=1,
29
+ apply_query_key_layer_scaling=True,
30
+ attention_softmax_in_fp32=True,
31
+ fp32_residual_connection=False,
32
+ **kwargs
33
+ ):
34
+ self.num_layers = num_layers
35
+ self.vocab_size = padded_vocab_size
36
+ self.padded_vocab_size = padded_vocab_size
37
+ self.hidden_size = hidden_size
38
+ self.ffn_hidden_size = ffn_hidden_size
39
+ self.kv_channels = kv_channels
40
+ self.num_attention_heads = num_attention_heads
41
+ self.seq_length = seq_length
42
+ self.hidden_dropout = hidden_dropout
43
+ self.classifier_dropout = classifier_dropout
44
+ self.attention_dropout = attention_dropout
45
+ self.layernorm_epsilon = layernorm_epsilon
46
+ self.rmsnorm = rmsnorm
47
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
48
+ self.post_layer_norm = post_layer_norm
49
+ self.add_bias_linear = add_bias_linear
50
+ self.add_qkv_bias = add_qkv_bias
51
+ self.bias_dropout_fusion = bias_dropout_fusion
52
+ self.multi_query_attention = multi_query_attention
53
+ self.multi_query_group_num = multi_query_group_num
54
+ self.rope_ratio = rope_ratio
55
+ self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
56
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
57
+ self.fp32_residual_connection = fp32_residual_connection
58
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_sample": true,
3
+ "eos_token_id": [
4
+ 151329,
5
+ 151336,
6
+ 151338
7
+ ],
8
+ "max_length": 128000,
9
+ "pad_token_id": 151329,
10
+ "temperature": 0.8,
11
+ "top_p": 0.8,
12
+ "transformers_version": "4.51.3"
13
+ }
model-00001-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7b9f44204eb86785a2f84cf547ae6cacc7233733faa408a7fbe6453b26b43d0
3
+ size 4930577664
model-00002-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5789d72de70d618f5a1156e91bdcf1560f3ed7e4d7165404ec433d7d74e241a9
3
+ size 4970581792
model-00003-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1338b11b9557a41a61335f79cc44bd2a54070184dcbb9977f21dc11c782733ba
3
+ size 4962191152
model-00004-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e77f92e2958dcc9584bdefce1ce0cd4296d12a7d4d6cfe2227e985e327c12d74
3
+ size 4895065656
model-00005-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f9cd233ec5f03e35380be6c9770b7b310704987af97564e332160205328aa8b
3
+ size 4895065656
model-00006-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af91c59b2feb0455cb419e636bbdc3446f96986bcf04b962ca73968ee8e8d29e
3
+ size 4895065656
model-00007-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bb230c7a7b4fa55920993274ac8d3e2b6fd7b672a94163da032d07a415fec39
3
+ size 4895065656
model-00008-of-00008.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa0c815343495b462d8c514ca80311be9395ba2f29498eab39262416f47040db
3
+ size 3156230656
model.safetensors.index.json ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 37599805568
4
+ },
5
+ "weight_map": {
6
+ "transformer.embedding.word_embeddings.weight": "model-00001-of-00008.safetensors",
7
+ "transformer.encoder.final_layernorm.weight": "model-00008-of-00008.safetensors",
8
+ "transformer.encoder.layers.0.input_layernorm.weight": "model-00001-of-00008.safetensors",
9
+ "transformer.encoder.layers.0.mlp.dense_4h_to_h.weight": "model-00001-of-00008.safetensors",
10
+ "transformer.encoder.layers.0.mlp.dense_h_to_4h.weight": "model-00001-of-00008.safetensors",
11
+ "transformer.encoder.layers.0.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
12
+ "transformer.encoder.layers.0.self_attention.dense.weight": "model-00001-of-00008.safetensors",
13
+ "transformer.encoder.layers.0.self_attention.query_key_value.bias": "model-00001-of-00008.safetensors",
14
+ "transformer.encoder.layers.0.self_attention.query_key_value.weight": "model-00001-of-00008.safetensors",
15
+ "transformer.encoder.layers.1.input_layernorm.weight": "model-00001-of-00008.safetensors",
16
+ "transformer.encoder.layers.1.mlp.dense_4h_to_h.weight": "model-00001-of-00008.safetensors",
17
+ "transformer.encoder.layers.1.mlp.dense_h_to_4h.weight": "model-00001-of-00008.safetensors",
18
+ "transformer.encoder.layers.1.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
19
+ "transformer.encoder.layers.1.self_attention.dense.weight": "model-00001-of-00008.safetensors",
20
+ "transformer.encoder.layers.1.self_attention.query_key_value.bias": "model-00001-of-00008.safetensors",
21
+ "transformer.encoder.layers.1.self_attention.query_key_value.weight": "model-00001-of-00008.safetensors",
22
+ "transformer.encoder.layers.10.input_layernorm.weight": "model-00003-of-00008.safetensors",
23
+ "transformer.encoder.layers.10.mlp.dense_4h_to_h.weight": "model-00003-of-00008.safetensors",
24
+ "transformer.encoder.layers.10.mlp.dense_h_to_4h.weight": "model-00003-of-00008.safetensors",
25
+ "transformer.encoder.layers.10.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
26
+ "transformer.encoder.layers.10.self_attention.dense.weight": "model-00003-of-00008.safetensors",
27
+ "transformer.encoder.layers.10.self_attention.query_key_value.bias": "model-00003-of-00008.safetensors",
28
+ "transformer.encoder.layers.10.self_attention.query_key_value.weight": "model-00003-of-00008.safetensors",
29
+ "transformer.encoder.layers.11.input_layernorm.weight": "model-00003-of-00008.safetensors",
30
+ "transformer.encoder.layers.11.mlp.dense_4h_to_h.weight": "model-00003-of-00008.safetensors",
31
+ "transformer.encoder.layers.11.mlp.dense_h_to_4h.weight": "model-00003-of-00008.safetensors",
32
+ "transformer.encoder.layers.11.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
33
+ "transformer.encoder.layers.11.self_attention.dense.weight": "model-00003-of-00008.safetensors",
34
+ "transformer.encoder.layers.11.self_attention.query_key_value.bias": "model-00003-of-00008.safetensors",
35
+ "transformer.encoder.layers.11.self_attention.query_key_value.weight": "model-00003-of-00008.safetensors",
36
+ "transformer.encoder.layers.12.input_layernorm.weight": "model-00003-of-00008.safetensors",
37
+ "transformer.encoder.layers.12.mlp.dense_4h_to_h.weight": "model-00003-of-00008.safetensors",
38
+ "transformer.encoder.layers.12.mlp.dense_h_to_4h.weight": "model-00003-of-00008.safetensors",
39
+ "transformer.encoder.layers.12.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
40
+ "transformer.encoder.layers.12.self_attention.dense.weight": "model-00003-of-00008.safetensors",
41
+ "transformer.encoder.layers.12.self_attention.query_key_value.bias": "model-00003-of-00008.safetensors",
42
+ "transformer.encoder.layers.12.self_attention.query_key_value.weight": "model-00003-of-00008.safetensors",
43
+ "transformer.encoder.layers.13.input_layernorm.weight": "model-00003-of-00008.safetensors",
44
+ "transformer.encoder.layers.13.mlp.dense_4h_to_h.weight": "model-00003-of-00008.safetensors",
45
+ "transformer.encoder.layers.13.mlp.dense_h_to_4h.weight": "model-00003-of-00008.safetensors",
46
+ "transformer.encoder.layers.13.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
47
+ "transformer.encoder.layers.13.self_attention.dense.weight": "model-00003-of-00008.safetensors",
48
+ "transformer.encoder.layers.13.self_attention.query_key_value.bias": "model-00003-of-00008.safetensors",
49
+ "transformer.encoder.layers.13.self_attention.query_key_value.weight": "model-00003-of-00008.safetensors",
50
+ "transformer.encoder.layers.14.input_layernorm.weight": "model-00003-of-00008.safetensors",
51
+ "transformer.encoder.layers.14.mlp.dense_4h_to_h.weight": "model-00003-of-00008.safetensors",
52
+ "transformer.encoder.layers.14.mlp.dense_h_to_4h.weight": "model-00003-of-00008.safetensors",
53
+ "transformer.encoder.layers.14.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
54
+ "transformer.encoder.layers.14.self_attention.dense.weight": "model-00003-of-00008.safetensors",
55
+ "transformer.encoder.layers.14.self_attention.query_key_value.bias": "model-00003-of-00008.safetensors",
56
+ "transformer.encoder.layers.14.self_attention.query_key_value.weight": "model-00003-of-00008.safetensors",
57
+ "transformer.encoder.layers.15.input_layernorm.weight": "model-00003-of-00008.safetensors",
58
+ "transformer.encoder.layers.15.mlp.dense_4h_to_h.weight": "model-00004-of-00008.safetensors",
59
+ "transformer.encoder.layers.15.mlp.dense_h_to_4h.weight": "model-00004-of-00008.safetensors",
60
+ "transformer.encoder.layers.15.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
61
+ "transformer.encoder.layers.15.self_attention.dense.weight": "model-00003-of-00008.safetensors",
62
+ "transformer.encoder.layers.15.self_attention.query_key_value.bias": "model-00003-of-00008.safetensors",
63
+ "transformer.encoder.layers.15.self_attention.query_key_value.weight": "model-00003-of-00008.safetensors",
64
+ "transformer.encoder.layers.16.input_layernorm.weight": "model-00004-of-00008.safetensors",
65
+ "transformer.encoder.layers.16.mlp.dense_4h_to_h.weight": "model-00004-of-00008.safetensors",
66
+ "transformer.encoder.layers.16.mlp.dense_h_to_4h.weight": "model-00004-of-00008.safetensors",
67
+ "transformer.encoder.layers.16.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
68
+ "transformer.encoder.layers.16.self_attention.dense.weight": "model-00004-of-00008.safetensors",
69
+ "transformer.encoder.layers.16.self_attention.query_key_value.bias": "model-00004-of-00008.safetensors",
70
+ "transformer.encoder.layers.16.self_attention.query_key_value.weight": "model-00004-of-00008.safetensors",
71
+ "transformer.encoder.layers.17.input_layernorm.weight": "model-00004-of-00008.safetensors",
72
+ "transformer.encoder.layers.17.mlp.dense_4h_to_h.weight": "model-00004-of-00008.safetensors",
73
+ "transformer.encoder.layers.17.mlp.dense_h_to_4h.weight": "model-00004-of-00008.safetensors",
74
+ "transformer.encoder.layers.17.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
75
+ "transformer.encoder.layers.17.self_attention.dense.weight": "model-00004-of-00008.safetensors",
76
+ "transformer.encoder.layers.17.self_attention.query_key_value.bias": "model-00004-of-00008.safetensors",
77
+ "transformer.encoder.layers.17.self_attention.query_key_value.weight": "model-00004-of-00008.safetensors",
78
+ "transformer.encoder.layers.18.input_layernorm.weight": "model-00004-of-00008.safetensors",
79
+ "transformer.encoder.layers.18.mlp.dense_4h_to_h.weight": "model-00004-of-00008.safetensors",
80
+ "transformer.encoder.layers.18.mlp.dense_h_to_4h.weight": "model-00004-of-00008.safetensors",
81
+ "transformer.encoder.layers.18.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
82
+ "transformer.encoder.layers.18.self_attention.dense.weight": "model-00004-of-00008.safetensors",
83
+ "transformer.encoder.layers.18.self_attention.query_key_value.bias": "model-00004-of-00008.safetensors",
84
+ "transformer.encoder.layers.18.self_attention.query_key_value.weight": "model-00004-of-00008.safetensors",
85
+ "transformer.encoder.layers.19.input_layernorm.weight": "model-00004-of-00008.safetensors",
86
+ "transformer.encoder.layers.19.mlp.dense_4h_to_h.weight": "model-00004-of-00008.safetensors",
87
+ "transformer.encoder.layers.19.mlp.dense_h_to_4h.weight": "model-00004-of-00008.safetensors",
88
+ "transformer.encoder.layers.19.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
89
+ "transformer.encoder.layers.19.self_attention.dense.weight": "model-00004-of-00008.safetensors",
90
+ "transformer.encoder.layers.19.self_attention.query_key_value.bias": "model-00004-of-00008.safetensors",
91
+ "transformer.encoder.layers.19.self_attention.query_key_value.weight": "model-00004-of-00008.safetensors",
92
+ "transformer.encoder.layers.2.input_layernorm.weight": "model-00001-of-00008.safetensors",
93
+ "transformer.encoder.layers.2.mlp.dense_4h_to_h.weight": "model-00001-of-00008.safetensors",
94
+ "transformer.encoder.layers.2.mlp.dense_h_to_4h.weight": "model-00001-of-00008.safetensors",
95
+ "transformer.encoder.layers.2.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
96
+ "transformer.encoder.layers.2.self_attention.dense.weight": "model-00001-of-00008.safetensors",
97
+ "transformer.encoder.layers.2.self_attention.query_key_value.bias": "model-00001-of-00008.safetensors",
98
+ "transformer.encoder.layers.2.self_attention.query_key_value.weight": "model-00001-of-00008.safetensors",
99
+ "transformer.encoder.layers.20.input_layernorm.weight": "model-00004-of-00008.safetensors",
100
+ "transformer.encoder.layers.20.mlp.dense_4h_to_h.weight": "model-00004-of-00008.safetensors",
101
+ "transformer.encoder.layers.20.mlp.dense_h_to_4h.weight": "model-00004-of-00008.safetensors",
102
+ "transformer.encoder.layers.20.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
103
+ "transformer.encoder.layers.20.self_attention.dense.weight": "model-00004-of-00008.safetensors",
104
+ "transformer.encoder.layers.20.self_attention.query_key_value.bias": "model-00004-of-00008.safetensors",
105
+ "transformer.encoder.layers.20.self_attention.query_key_value.weight": "model-00004-of-00008.safetensors",
106
+ "transformer.encoder.layers.21.input_layernorm.weight": "model-00004-of-00008.safetensors",
107
+ "transformer.encoder.layers.21.mlp.dense_4h_to_h.weight": "model-00005-of-00008.safetensors",
108
+ "transformer.encoder.layers.21.mlp.dense_h_to_4h.weight": "model-00005-of-00008.safetensors",
109
+ "transformer.encoder.layers.21.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
110
+ "transformer.encoder.layers.21.self_attention.dense.weight": "model-00004-of-00008.safetensors",
111
+ "transformer.encoder.layers.21.self_attention.query_key_value.bias": "model-00004-of-00008.safetensors",
112
+ "transformer.encoder.layers.21.self_attention.query_key_value.weight": "model-00004-of-00008.safetensors",
113
+ "transformer.encoder.layers.22.input_layernorm.weight": "model-00005-of-00008.safetensors",
114
+ "transformer.encoder.layers.22.mlp.dense_4h_to_h.weight": "model-00005-of-00008.safetensors",
115
+ "transformer.encoder.layers.22.mlp.dense_h_to_4h.weight": "model-00005-of-00008.safetensors",
116
+ "transformer.encoder.layers.22.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
117
+ "transformer.encoder.layers.22.self_attention.dense.weight": "model-00005-of-00008.safetensors",
118
+ "transformer.encoder.layers.22.self_attention.query_key_value.bias": "model-00005-of-00008.safetensors",
119
+ "transformer.encoder.layers.22.self_attention.query_key_value.weight": "model-00005-of-00008.safetensors",
120
+ "transformer.encoder.layers.23.input_layernorm.weight": "model-00005-of-00008.safetensors",
121
+ "transformer.encoder.layers.23.mlp.dense_4h_to_h.weight": "model-00005-of-00008.safetensors",
122
+ "transformer.encoder.layers.23.mlp.dense_h_to_4h.weight": "model-00005-of-00008.safetensors",
123
+ "transformer.encoder.layers.23.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
124
+ "transformer.encoder.layers.23.self_attention.dense.weight": "model-00005-of-00008.safetensors",
125
+ "transformer.encoder.layers.23.self_attention.query_key_value.bias": "model-00005-of-00008.safetensors",
126
+ "transformer.encoder.layers.23.self_attention.query_key_value.weight": "model-00005-of-00008.safetensors",
127
+ "transformer.encoder.layers.24.input_layernorm.weight": "model-00005-of-00008.safetensors",
128
+ "transformer.encoder.layers.24.mlp.dense_4h_to_h.weight": "model-00005-of-00008.safetensors",
129
+ "transformer.encoder.layers.24.mlp.dense_h_to_4h.weight": "model-00005-of-00008.safetensors",
130
+ "transformer.encoder.layers.24.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
131
+ "transformer.encoder.layers.24.self_attention.dense.weight": "model-00005-of-00008.safetensors",
132
+ "transformer.encoder.layers.24.self_attention.query_key_value.bias": "model-00005-of-00008.safetensors",
133
+ "transformer.encoder.layers.24.self_attention.query_key_value.weight": "model-00005-of-00008.safetensors",
134
+ "transformer.encoder.layers.25.input_layernorm.weight": "model-00005-of-00008.safetensors",
135
+ "transformer.encoder.layers.25.mlp.dense_4h_to_h.weight": "model-00005-of-00008.safetensors",
136
+ "transformer.encoder.layers.25.mlp.dense_h_to_4h.weight": "model-00005-of-00008.safetensors",
137
+ "transformer.encoder.layers.25.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
138
+ "transformer.encoder.layers.25.self_attention.dense.weight": "model-00005-of-00008.safetensors",
139
+ "transformer.encoder.layers.25.self_attention.query_key_value.bias": "model-00005-of-00008.safetensors",
140
+ "transformer.encoder.layers.25.self_attention.query_key_value.weight": "model-00005-of-00008.safetensors",
141
+ "transformer.encoder.layers.26.input_layernorm.weight": "model-00005-of-00008.safetensors",
142
+ "transformer.encoder.layers.26.mlp.dense_4h_to_h.weight": "model-00005-of-00008.safetensors",
143
+ "transformer.encoder.layers.26.mlp.dense_h_to_4h.weight": "model-00005-of-00008.safetensors",
144
+ "transformer.encoder.layers.26.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
145
+ "transformer.encoder.layers.26.self_attention.dense.weight": "model-00005-of-00008.safetensors",
146
+ "transformer.encoder.layers.26.self_attention.query_key_value.bias": "model-00005-of-00008.safetensors",
147
+ "transformer.encoder.layers.26.self_attention.query_key_value.weight": "model-00005-of-00008.safetensors",
148
+ "transformer.encoder.layers.27.input_layernorm.weight": "model-00005-of-00008.safetensors",
149
+ "transformer.encoder.layers.27.mlp.dense_4h_to_h.weight": "model-00006-of-00008.safetensors",
150
+ "transformer.encoder.layers.27.mlp.dense_h_to_4h.weight": "model-00006-of-00008.safetensors",
151
+ "transformer.encoder.layers.27.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
152
+ "transformer.encoder.layers.27.self_attention.dense.weight": "model-00005-of-00008.safetensors",
153
+ "transformer.encoder.layers.27.self_attention.query_key_value.bias": "model-00005-of-00008.safetensors",
154
+ "transformer.encoder.layers.27.self_attention.query_key_value.weight": "model-00005-of-00008.safetensors",
155
+ "transformer.encoder.layers.28.input_layernorm.weight": "model-00006-of-00008.safetensors",
156
+ "transformer.encoder.layers.28.mlp.dense_4h_to_h.weight": "model-00006-of-00008.safetensors",
157
+ "transformer.encoder.layers.28.mlp.dense_h_to_4h.weight": "model-00006-of-00008.safetensors",
158
+ "transformer.encoder.layers.28.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
159
+ "transformer.encoder.layers.28.self_attention.dense.weight": "model-00006-of-00008.safetensors",
160
+ "transformer.encoder.layers.28.self_attention.query_key_value.bias": "model-00006-of-00008.safetensors",
161
+ "transformer.encoder.layers.28.self_attention.query_key_value.weight": "model-00006-of-00008.safetensors",
162
+ "transformer.encoder.layers.29.input_layernorm.weight": "model-00006-of-00008.safetensors",
163
+ "transformer.encoder.layers.29.mlp.dense_4h_to_h.weight": "model-00006-of-00008.safetensors",
164
+ "transformer.encoder.layers.29.mlp.dense_h_to_4h.weight": "model-00006-of-00008.safetensors",
165
+ "transformer.encoder.layers.29.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
166
+ "transformer.encoder.layers.29.self_attention.dense.weight": "model-00006-of-00008.safetensors",
167
+ "transformer.encoder.layers.29.self_attention.query_key_value.bias": "model-00006-of-00008.safetensors",
168
+ "transformer.encoder.layers.29.self_attention.query_key_value.weight": "model-00006-of-00008.safetensors",
169
+ "transformer.encoder.layers.3.input_layernorm.weight": "model-00001-of-00008.safetensors",
170
+ "transformer.encoder.layers.3.mlp.dense_4h_to_h.weight": "model-00002-of-00008.safetensors",
171
+ "transformer.encoder.layers.3.mlp.dense_h_to_4h.weight": "model-00002-of-00008.safetensors",
172
+ "transformer.encoder.layers.3.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
173
+ "transformer.encoder.layers.3.self_attention.dense.weight": "model-00002-of-00008.safetensors",
174
+ "transformer.encoder.layers.3.self_attention.query_key_value.bias": "model-00002-of-00008.safetensors",
175
+ "transformer.encoder.layers.3.self_attention.query_key_value.weight": "model-00002-of-00008.safetensors",
176
+ "transformer.encoder.layers.30.input_layernorm.weight": "model-00006-of-00008.safetensors",
177
+ "transformer.encoder.layers.30.mlp.dense_4h_to_h.weight": "model-00006-of-00008.safetensors",
178
+ "transformer.encoder.layers.30.mlp.dense_h_to_4h.weight": "model-00006-of-00008.safetensors",
179
+ "transformer.encoder.layers.30.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
180
+ "transformer.encoder.layers.30.self_attention.dense.weight": "model-00006-of-00008.safetensors",
181
+ "transformer.encoder.layers.30.self_attention.query_key_value.bias": "model-00006-of-00008.safetensors",
182
+ "transformer.encoder.layers.30.self_attention.query_key_value.weight": "model-00006-of-00008.safetensors",
183
+ "transformer.encoder.layers.31.input_layernorm.weight": "model-00006-of-00008.safetensors",
184
+ "transformer.encoder.layers.31.mlp.dense_4h_to_h.weight": "model-00006-of-00008.safetensors",
185
+ "transformer.encoder.layers.31.mlp.dense_h_to_4h.weight": "model-00006-of-00008.safetensors",
186
+ "transformer.encoder.layers.31.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
187
+ "transformer.encoder.layers.31.self_attention.dense.weight": "model-00006-of-00008.safetensors",
188
+ "transformer.encoder.layers.31.self_attention.query_key_value.bias": "model-00006-of-00008.safetensors",
189
+ "transformer.encoder.layers.31.self_attention.query_key_value.weight": "model-00006-of-00008.safetensors",
190
+ "transformer.encoder.layers.32.input_layernorm.weight": "model-00006-of-00008.safetensors",
191
+ "transformer.encoder.layers.32.mlp.dense_4h_to_h.weight": "model-00006-of-00008.safetensors",
192
+ "transformer.encoder.layers.32.mlp.dense_h_to_4h.weight": "model-00006-of-00008.safetensors",
193
+ "transformer.encoder.layers.32.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
194
+ "transformer.encoder.layers.32.self_attention.dense.weight": "model-00006-of-00008.safetensors",
195
+ "transformer.encoder.layers.32.self_attention.query_key_value.bias": "model-00006-of-00008.safetensors",
196
+ "transformer.encoder.layers.32.self_attention.query_key_value.weight": "model-00006-of-00008.safetensors",
197
+ "transformer.encoder.layers.33.input_layernorm.weight": "model-00006-of-00008.safetensors",
198
+ "transformer.encoder.layers.33.mlp.dense_4h_to_h.weight": "model-00007-of-00008.safetensors",
199
+ "transformer.encoder.layers.33.mlp.dense_h_to_4h.weight": "model-00007-of-00008.safetensors",
200
+ "transformer.encoder.layers.33.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
201
+ "transformer.encoder.layers.33.self_attention.dense.weight": "model-00006-of-00008.safetensors",
202
+ "transformer.encoder.layers.33.self_attention.query_key_value.bias": "model-00006-of-00008.safetensors",
203
+ "transformer.encoder.layers.33.self_attention.query_key_value.weight": "model-00006-of-00008.safetensors",
204
+ "transformer.encoder.layers.34.input_layernorm.weight": "model-00007-of-00008.safetensors",
205
+ "transformer.encoder.layers.34.mlp.dense_4h_to_h.weight": "model-00007-of-00008.safetensors",
206
+ "transformer.encoder.layers.34.mlp.dense_h_to_4h.weight": "model-00007-of-00008.safetensors",
207
+ "transformer.encoder.layers.34.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
208
+ "transformer.encoder.layers.34.self_attention.dense.weight": "model-00007-of-00008.safetensors",
209
+ "transformer.encoder.layers.34.self_attention.query_key_value.bias": "model-00007-of-00008.safetensors",
210
+ "transformer.encoder.layers.34.self_attention.query_key_value.weight": "model-00007-of-00008.safetensors",
211
+ "transformer.encoder.layers.35.input_layernorm.weight": "model-00007-of-00008.safetensors",
212
+ "transformer.encoder.layers.35.mlp.dense_4h_to_h.weight": "model-00007-of-00008.safetensors",
213
+ "transformer.encoder.layers.35.mlp.dense_h_to_4h.weight": "model-00007-of-00008.safetensors",
214
+ "transformer.encoder.layers.35.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
215
+ "transformer.encoder.layers.35.self_attention.dense.weight": "model-00007-of-00008.safetensors",
216
+ "transformer.encoder.layers.35.self_attention.query_key_value.bias": "model-00007-of-00008.safetensors",
217
+ "transformer.encoder.layers.35.self_attention.query_key_value.weight": "model-00007-of-00008.safetensors",
218
+ "transformer.encoder.layers.36.input_layernorm.weight": "model-00007-of-00008.safetensors",
219
+ "transformer.encoder.layers.36.mlp.dense_4h_to_h.weight": "model-00007-of-00008.safetensors",
220
+ "transformer.encoder.layers.36.mlp.dense_h_to_4h.weight": "model-00007-of-00008.safetensors",
221
+ "transformer.encoder.layers.36.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
222
+ "transformer.encoder.layers.36.self_attention.dense.weight": "model-00007-of-00008.safetensors",
223
+ "transformer.encoder.layers.36.self_attention.query_key_value.bias": "model-00007-of-00008.safetensors",
224
+ "transformer.encoder.layers.36.self_attention.query_key_value.weight": "model-00007-of-00008.safetensors",
225
+ "transformer.encoder.layers.37.input_layernorm.weight": "model-00007-of-00008.safetensors",
226
+ "transformer.encoder.layers.37.mlp.dense_4h_to_h.weight": "model-00007-of-00008.safetensors",
227
+ "transformer.encoder.layers.37.mlp.dense_h_to_4h.weight": "model-00007-of-00008.safetensors",
228
+ "transformer.encoder.layers.37.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
229
+ "transformer.encoder.layers.37.self_attention.dense.weight": "model-00007-of-00008.safetensors",
230
+ "transformer.encoder.layers.37.self_attention.query_key_value.bias": "model-00007-of-00008.safetensors",
231
+ "transformer.encoder.layers.37.self_attention.query_key_value.weight": "model-00007-of-00008.safetensors",
232
+ "transformer.encoder.layers.38.input_layernorm.weight": "model-00007-of-00008.safetensors",
233
+ "transformer.encoder.layers.38.mlp.dense_4h_to_h.weight": "model-00007-of-00008.safetensors",
234
+ "transformer.encoder.layers.38.mlp.dense_h_to_4h.weight": "model-00007-of-00008.safetensors",
235
+ "transformer.encoder.layers.38.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
236
+ "transformer.encoder.layers.38.self_attention.dense.weight": "model-00007-of-00008.safetensors",
237
+ "transformer.encoder.layers.38.self_attention.query_key_value.bias": "model-00007-of-00008.safetensors",
238
+ "transformer.encoder.layers.38.self_attention.query_key_value.weight": "model-00007-of-00008.safetensors",
239
+ "transformer.encoder.layers.39.input_layernorm.weight": "model-00007-of-00008.safetensors",
240
+ "transformer.encoder.layers.39.mlp.dense_4h_to_h.weight": "model-00008-of-00008.safetensors",
241
+ "transformer.encoder.layers.39.mlp.dense_h_to_4h.weight": "model-00008-of-00008.safetensors",
242
+ "transformer.encoder.layers.39.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
243
+ "transformer.encoder.layers.39.self_attention.dense.weight": "model-00007-of-00008.safetensors",
244
+ "transformer.encoder.layers.39.self_attention.query_key_value.bias": "model-00007-of-00008.safetensors",
245
+ "transformer.encoder.layers.39.self_attention.query_key_value.weight": "model-00007-of-00008.safetensors",
246
+ "transformer.encoder.layers.4.input_layernorm.weight": "model-00002-of-00008.safetensors",
247
+ "transformer.encoder.layers.4.mlp.dense_4h_to_h.weight": "model-00002-of-00008.safetensors",
248
+ "transformer.encoder.layers.4.mlp.dense_h_to_4h.weight": "model-00002-of-00008.safetensors",
249
+ "transformer.encoder.layers.4.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
250
+ "transformer.encoder.layers.4.self_attention.dense.weight": "model-00002-of-00008.safetensors",
251
+ "transformer.encoder.layers.4.self_attention.query_key_value.bias": "model-00002-of-00008.safetensors",
252
+ "transformer.encoder.layers.4.self_attention.query_key_value.weight": "model-00002-of-00008.safetensors",
253
+ "transformer.encoder.layers.5.input_layernorm.weight": "model-00002-of-00008.safetensors",
254
+ "transformer.encoder.layers.5.mlp.dense_4h_to_h.weight": "model-00002-of-00008.safetensors",
255
+ "transformer.encoder.layers.5.mlp.dense_h_to_4h.weight": "model-00002-of-00008.safetensors",
256
+ "transformer.encoder.layers.5.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
257
+ "transformer.encoder.layers.5.self_attention.dense.weight": "model-00002-of-00008.safetensors",
258
+ "transformer.encoder.layers.5.self_attention.query_key_value.bias": "model-00002-of-00008.safetensors",
259
+ "transformer.encoder.layers.5.self_attention.query_key_value.weight": "model-00002-of-00008.safetensors",
260
+ "transformer.encoder.layers.6.input_layernorm.weight": "model-00002-of-00008.safetensors",
261
+ "transformer.encoder.layers.6.mlp.dense_4h_to_h.weight": "model-00002-of-00008.safetensors",
262
+ "transformer.encoder.layers.6.mlp.dense_h_to_4h.weight": "model-00002-of-00008.safetensors",
263
+ "transformer.encoder.layers.6.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
264
+ "transformer.encoder.layers.6.self_attention.dense.weight": "model-00002-of-00008.safetensors",
265
+ "transformer.encoder.layers.6.self_attention.query_key_value.bias": "model-00002-of-00008.safetensors",
266
+ "transformer.encoder.layers.6.self_attention.query_key_value.weight": "model-00002-of-00008.safetensors",
267
+ "transformer.encoder.layers.7.input_layernorm.weight": "model-00002-of-00008.safetensors",
268
+ "transformer.encoder.layers.7.mlp.dense_4h_to_h.weight": "model-00002-of-00008.safetensors",
269
+ "transformer.encoder.layers.7.mlp.dense_h_to_4h.weight": "model-00002-of-00008.safetensors",
270
+ "transformer.encoder.layers.7.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
271
+ "transformer.encoder.layers.7.self_attention.dense.weight": "model-00002-of-00008.safetensors",
272
+ "transformer.encoder.layers.7.self_attention.query_key_value.bias": "model-00002-of-00008.safetensors",
273
+ "transformer.encoder.layers.7.self_attention.query_key_value.weight": "model-00002-of-00008.safetensors",
274
+ "transformer.encoder.layers.8.input_layernorm.weight": "model-00002-of-00008.safetensors",
275
+ "transformer.encoder.layers.8.mlp.dense_4h_to_h.weight": "model-00002-of-00008.safetensors",
276
+ "transformer.encoder.layers.8.mlp.dense_h_to_4h.weight": "model-00002-of-00008.safetensors",
277
+ "transformer.encoder.layers.8.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
278
+ "transformer.encoder.layers.8.self_attention.dense.weight": "model-00002-of-00008.safetensors",
279
+ "transformer.encoder.layers.8.self_attention.query_key_value.bias": "model-00002-of-00008.safetensors",
280
+ "transformer.encoder.layers.8.self_attention.query_key_value.weight": "model-00002-of-00008.safetensors",
281
+ "transformer.encoder.layers.9.input_layernorm.weight": "model-00002-of-00008.safetensors",
282
+ "transformer.encoder.layers.9.mlp.dense_4h_to_h.weight": "model-00003-of-00008.safetensors",
283
+ "transformer.encoder.layers.9.mlp.dense_h_to_4h.weight": "model-00003-of-00008.safetensors",
284
+ "transformer.encoder.layers.9.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
285
+ "transformer.encoder.layers.9.self_attention.dense.weight": "model-00003-of-00008.safetensors",
286
+ "transformer.encoder.layers.9.self_attention.query_key_value.bias": "model-00002-of-00008.safetensors",
287
+ "transformer.encoder.layers.9.self_attention.query_key_value.weight": "model-00002-of-00008.safetensors",
288
+ "transformer.output_layer.weight": "model-00008-of-00008.safetensors",
289
+ "transformer.rotary_pos_emb.inv_freq": "model-00001-of-00008.safetensors"
290
+ }
291
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "[MASK]",
5
+ "[gMASK]",
6
+ "[sMASK]",
7
+ "<sop>",
8
+ "<eop>",
9
+ "<|system|>",
10
+ "<|user|>",
11
+ "<|assistant|>",
12
+ "<|observation|>",
13
+ "<|begin_of_image|>",
14
+ "<|end_of_image|>",
15
+ "<|begin_of_video|>",
16
+ "<|end_of_video|>"
17
+ ],
18
+ "eos_token": {
19
+ "content": "<|endoftext|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<|endoftext|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ }
32
+ }
tokenization_chatglm.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import regex as re
2
+ import base64
3
+ import os
4
+ import tiktoken
5
+ from typing import List, Optional, Union, Dict
6
+ from transformers import PreTrainedTokenizer
7
+ from transformers.utils import PaddingStrategy
8
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
9
+
10
+
11
+ class ChatGLM4Tokenizer(PreTrainedTokenizer):
12
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
13
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
14
+
15
+ def __init__(
16
+ self,
17
+ vocab_file,
18
+ clean_up_tokenization_spaces=False,
19
+ **kwargs
20
+ ):
21
+ self.name = "GLM4Tokenizer"
22
+ self.vocab_file = vocab_file
23
+ pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
24
+ self.pat_str = re.compile(pat_str)
25
+
26
+ mergeable_ranks = {}
27
+ with open(vocab_file) as f:
28
+ for line in f:
29
+ token, rank = line.strip().split()
30
+ rank = int(rank)
31
+ token = base64.b64decode(token)
32
+ mergeable_ranks[token] = rank
33
+
34
+ self.mergeable_ranks = mergeable_ranks
35
+
36
+ self.tokenizer = tiktoken.Encoding(
37
+ name="my_tokenizer",
38
+ pat_str=pat_str,
39
+ mergeable_ranks=mergeable_ranks,
40
+ special_tokens={}
41
+ )
42
+ self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
43
+ self.n_words = len(self.decoder)
44
+
45
+ super().__init__(
46
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
47
+ **kwargs
48
+ )
49
+
50
+ @property
51
+ def vocab_size(self):
52
+ return self.n_words
53
+
54
+ def get_vocab(self):
55
+ """ Returns vocab as a dict """
56
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
57
+ vocab.update(self.added_tokens_encoder)
58
+ return vocab
59
+
60
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str:
61
+ """
62
+ Converts a sequence of tokens in a single string.
63
+ """
64
+ text = ""
65
+ temp = b""
66
+ for t in tokens:
67
+ if isinstance(t, int):
68
+ t = chr(t)
69
+ if isinstance(t, str):
70
+ if temp:
71
+ text += temp.decode("utf-8", errors="replace")
72
+ elif isinstance(t, bytes):
73
+ temp += t
74
+ else:
75
+ raise TypeError("token should only be of type int, bytes or str")
76
+ if temp:
77
+ text += temp.decode("utf-8", errors="replace")
78
+ return text
79
+
80
+ def _tokenize(self, text, **kwargs):
81
+ tokens = []
82
+ ids = self.tokenizer.encode(text)
83
+ for t in ids:
84
+ tokens.append(self.decoder[t])
85
+ return tokens
86
+
87
+ def _convert_token_to_id(self, token):
88
+ """ Converts a token (str) in an id using the vocab. """
89
+ return self.mergeable_ranks[token]
90
+
91
+ def _convert_id_to_token(self, index):
92
+ """Converts an index (integer) in a token (str) using the vocab."""
93
+ return self.decoder.get(index, "")
94
+
95
+ def save_vocabulary(self, save_directory, filename_prefix=None):
96
+ """
97
+ Save the vocabulary and special tokens file to a directory.
98
+
99
+ Args:
100
+ save_directory (`str`):
101
+ The directory in which to save the vocabulary.
102
+ filename_prefix (`str`, *optional*):
103
+ An optional prefix to add to the named of the saved files.
104
+
105
+ Returns:
106
+ `Tuple(str)`: Paths to the files saved.
107
+ """
108
+ if os.path.isdir(save_directory):
109
+ vocab_file = os.path.join(
110
+ save_directory, self.vocab_files_names["vocab_file"]
111
+ )
112
+ else:
113
+ vocab_file = save_directory
114
+
115
+ with open(self.vocab_file, 'rb') as fin:
116
+ proto_str = fin.read()
117
+
118
+ with open(vocab_file, "wb") as writer:
119
+ writer.write(proto_str)
120
+
121
+ return (vocab_file,)
122
+
123
+ def get_prefix_tokens(self):
124
+ prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
125
+ return prefix_tokens
126
+
127
+ def build_single_message(self, role, metadata, message, tokenize=True):
128
+ assert role in ["system", "user", "assistant", "observation"], role
129
+ if tokenize:
130
+ role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
131
+ disallowed_special=())
132
+ message_tokens = self.tokenizer.encode(message, disallowed_special=())
133
+ tokens = role_tokens + message_tokens
134
+ return tokens
135
+ else:
136
+ return str(f"<|{role}|>{metadata}\n{message}")
137
+
138
+ def build_inputs_with_special_tokens(
139
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
140
+ ) -> List[int]:
141
+ """
142
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
143
+ adding special tokens. A BERT sequence has the following format:
144
+
145
+ - single sequence: `[CLS] X [SEP]`
146
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
147
+
148
+ Args:
149
+ token_ids_0 (`List[int]`):
150
+ List of IDs to which the special tokens will be added.
151
+ token_ids_1 (`List[int]`, *optional*):
152
+ Optional second list of IDs for sequence pairs.
153
+
154
+ Returns:
155
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
156
+ """
157
+ prefix_tokens = self.get_prefix_tokens()
158
+ token_ids_0 = prefix_tokens + token_ids_0
159
+ if token_ids_1 is not None:
160
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")]
161
+ return token_ids_0
162
+
163
+ def _pad(
164
+ self,
165
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
166
+ max_length: Optional[int] = None,
167
+ padding_side: str = "left",
168
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
169
+ pad_to_multiple_of: Optional[int] = None,
170
+ return_attention_mask: Optional[bool] = None,
171
+ ) -> dict:
172
+ """
173
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
174
+
175
+ Args:
176
+ encoded_inputs:
177
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
178
+ max_length: maximum length of the returned list and optionally padding length (see below).
179
+ Will truncate by taking into account the special tokens.
180
+ padding_strategy: PaddingStrategy to use for padding.
181
+
182
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
183
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
184
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
185
+ The tokenizer padding sides are defined in self.padding_side:
186
+
187
+ - 'left': pads on the left of the sequences
188
+ - 'right': pads on the right of the sequences
189
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
190
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
191
+ `>= 7.5` (Volta).
192
+ return_attention_mask:
193
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
194
+ """
195
+ # Load from model defaults
196
+
197
+ required_input = encoded_inputs[self.model_input_names[0]]
198
+ seq_length = len(required_input)
199
+
200
+ if padding_strategy == PaddingStrategy.LONGEST:
201
+ max_length = len(required_input)
202
+
203
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
204
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
205
+
206
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
207
+
208
+ # Initialize attention mask if not present.
209
+ if "attention_mask" not in encoded_inputs:
210
+ encoded_inputs["attention_mask"] = [1] * seq_length
211
+
212
+ if "position_ids" not in encoded_inputs:
213
+ encoded_inputs["position_ids"] = list(range(seq_length))
214
+
215
+ if needs_to_be_padded:
216
+ difference = max_length - len(required_input)
217
+
218
+ if "attention_mask" in encoded_inputs:
219
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
220
+ if "position_ids" in encoded_inputs:
221
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
222
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
223
+
224
+ return encoded_inputs
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a493598071550244b2ee7f26118f3edec2150b9dfa967929a99052ac83fe716
3
+ size 2623634
tokenizer_config.json ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "151329": {
4
+ "content": "<|endoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "151330": {
12
+ "content": "[MASK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "151331": {
20
+ "content": "[gMASK]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "151332": {
28
+ "content": "[sMASK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "151333": {
36
+ "content": "<sop>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "151334": {
44
+ "content": "<eop>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "151335": {
52
+ "content": "<|system|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "151336": {
60
+ "content": "<|user|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "151337": {
68
+ "content": "<|assistant|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "151338": {
76
+ "content": "<|observation|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "151339": {
84
+ "content": "<|begin_of_image|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "151340": {
92
+ "content": "<|end_of_image|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "151341": {
100
+ "content": "<|begin_of_video|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "151342": {
108
+ "content": "<|end_of_video|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ }
115
+ },
116
+ "additional_special_tokens": [
117
+ "<|endoftext|>",
118
+ "[MASK]",
119
+ "[gMASK]",
120
+ "[sMASK]",
121
+ "<sop>",
122
+ "<eop>",
123
+ "<|system|>",
124
+ "<|user|>",
125
+ "<|assistant|>",
126
+ "<|observation|>",
127
+ "<|begin_of_image|>",
128
+ "<|end_of_image|>",
129
+ "<|begin_of_video|>",
130
+ "<|end_of_video|>"
131
+ ],
132
+ "auto_map": {
133
+ "AutoTokenizer": [
134
+ "tokenization_chatglm.ChatGLM4Tokenizer",
135
+ null
136
+ ]
137
+ },
138
+ "chat_template": "{{ '[gMASK]<sop>' }}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<|system|>\n' + system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|assistant|>' }}{% elif message['role'] == 'assistant' %}{{ '\n' + content }}{% endif %}{% endfor %}",
139
+ "clean_up_tokenization_spaces": false,
140
+ "do_lower_case": false,
141
+ "eos_token": "<|endoftext|>",
142
+ "extra_special_tokens": {},
143
+ "model_max_length": 128000,
144
+ "pad_token": "<|endoftext|>",
145
+ "padding_side": "right",
146
+ "remove_space": false,
147
+ "split_special_tokens": false,
148
+ "tokenizer_class": "ChatGLM4Tokenizer"
149
+ }