Upload model
Browse files- README.md +199 -0
- added_tokens.json +16 -0
- config.json +49 -0
- configuration_chatglm.py +58 -0
- generation_config.json +13 -0
- model-00001-of-00008.safetensors +3 -0
- model-00002-of-00008.safetensors +3 -0
- model-00003-of-00008.safetensors +3 -0
- model-00004-of-00008.safetensors +3 -0
- model-00005-of-00008.safetensors +3 -0
- model-00006-of-00008.safetensors +3 -0
- model-00007-of-00008.safetensors +3 -0
- model-00008-of-00008.safetensors +3 -0
- model.safetensors.index.json +291 -0
- special_tokens_map.json +32 -0
- tokenization_chatglm.py +224 -0
- tokenizer.model +3 -0
- tokenizer_config.json +149 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
added_tokens.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<eop>": 151334,
|
3 |
+
"<sop>": 151333,
|
4 |
+
"<|assistant|>": 151337,
|
5 |
+
"<|begin_of_image|>": 151339,
|
6 |
+
"<|begin_of_video|>": 151341,
|
7 |
+
"<|end_of_image|>": 151340,
|
8 |
+
"<|end_of_video|>": 151342,
|
9 |
+
"<|endoftext|>": 151329,
|
10 |
+
"<|observation|>": 151338,
|
11 |
+
"<|system|>": 151335,
|
12 |
+
"<|user|>": 151336,
|
13 |
+
"[MASK]": 151330,
|
14 |
+
"[gMASK]": 151331,
|
15 |
+
"[sMASK]": 151332
|
16 |
+
}
|
config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bias_linear": false,
|
3 |
+
"add_qkv_bias": true,
|
4 |
+
"apply_query_key_layer_scaling": true,
|
5 |
+
"apply_residual_connection_post_layernorm": false,
|
6 |
+
"architectures": [
|
7 |
+
"ChatGLMForConditionalGeneration"
|
8 |
+
],
|
9 |
+
"attention_dropout": 0.0,
|
10 |
+
"attention_softmax_in_fp32": true,
|
11 |
+
"auto_map": {
|
12 |
+
"AutoConfig": "configuration_chatglm.ChatGLMConfig",
|
13 |
+
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
14 |
+
"AutoModelForCausalLM": "THUDM/glm-4-9b-chat--modeling_chatglm.ChatGLMForConditionalGeneration",
|
15 |
+
"AutoModelForSeq2SeqLM": "THUDM/glm-4-9b-chat--modeling_chatglm.ChatGLMForConditionalGeneration",
|
16 |
+
"AutoModelForSequenceClassification": "THUDM/glm-4-9b-chat--modeling_chatglm.ChatGLMForSequenceClassification"
|
17 |
+
},
|
18 |
+
"bias_dropout_fusion": true,
|
19 |
+
"classifier_dropout": null,
|
20 |
+
"eos_token_id": [
|
21 |
+
151329,
|
22 |
+
151336,
|
23 |
+
151338
|
24 |
+
],
|
25 |
+
"ffn_hidden_size": 13696,
|
26 |
+
"fp32_residual_connection": false,
|
27 |
+
"hidden_dropout": 0.0,
|
28 |
+
"hidden_size": 4096,
|
29 |
+
"kv_channels": 128,
|
30 |
+
"layernorm_epsilon": 1.5625e-07,
|
31 |
+
"model_type": "chatglm",
|
32 |
+
"multi_query_attention": true,
|
33 |
+
"multi_query_group_num": 2,
|
34 |
+
"num_attention_heads": 32,
|
35 |
+
"num_hidden_layers": 40,
|
36 |
+
"num_layers": 40,
|
37 |
+
"original_rope": true,
|
38 |
+
"pad_token_id": 151329,
|
39 |
+
"padded_vocab_size": 151552,
|
40 |
+
"post_layer_norm": true,
|
41 |
+
"rmsnorm": true,
|
42 |
+
"rope_ratio": 500,
|
43 |
+
"seq_length": 131072,
|
44 |
+
"tie_word_embeddings": false,
|
45 |
+
"torch_dtype": "float32",
|
46 |
+
"transformers_version": "4.51.3",
|
47 |
+
"use_cache": false,
|
48 |
+
"vocab_size": 151552
|
49 |
+
}
|
configuration_chatglm.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class ChatGLMConfig(PretrainedConfig):
|
5 |
+
model_type = "chatglm"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
num_layers=28,
|
10 |
+
padded_vocab_size=65024,
|
11 |
+
hidden_size=4096,
|
12 |
+
ffn_hidden_size=13696,
|
13 |
+
kv_channels=128,
|
14 |
+
num_attention_heads=32,
|
15 |
+
seq_length=2048,
|
16 |
+
hidden_dropout=0.0,
|
17 |
+
classifier_dropout=None,
|
18 |
+
attention_dropout=0.0,
|
19 |
+
layernorm_epsilon=1e-5,
|
20 |
+
rmsnorm=True,
|
21 |
+
apply_residual_connection_post_layernorm=False,
|
22 |
+
post_layer_norm=True,
|
23 |
+
add_bias_linear=False,
|
24 |
+
add_qkv_bias=False,
|
25 |
+
bias_dropout_fusion=True,
|
26 |
+
multi_query_attention=False,
|
27 |
+
multi_query_group_num=1,
|
28 |
+
rope_ratio=1,
|
29 |
+
apply_query_key_layer_scaling=True,
|
30 |
+
attention_softmax_in_fp32=True,
|
31 |
+
fp32_residual_connection=False,
|
32 |
+
**kwargs
|
33 |
+
):
|
34 |
+
self.num_layers = num_layers
|
35 |
+
self.vocab_size = padded_vocab_size
|
36 |
+
self.padded_vocab_size = padded_vocab_size
|
37 |
+
self.hidden_size = hidden_size
|
38 |
+
self.ffn_hidden_size = ffn_hidden_size
|
39 |
+
self.kv_channels = kv_channels
|
40 |
+
self.num_attention_heads = num_attention_heads
|
41 |
+
self.seq_length = seq_length
|
42 |
+
self.hidden_dropout = hidden_dropout
|
43 |
+
self.classifier_dropout = classifier_dropout
|
44 |
+
self.attention_dropout = attention_dropout
|
45 |
+
self.layernorm_epsilon = layernorm_epsilon
|
46 |
+
self.rmsnorm = rmsnorm
|
47 |
+
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
48 |
+
self.post_layer_norm = post_layer_norm
|
49 |
+
self.add_bias_linear = add_bias_linear
|
50 |
+
self.add_qkv_bias = add_qkv_bias
|
51 |
+
self.bias_dropout_fusion = bias_dropout_fusion
|
52 |
+
self.multi_query_attention = multi_query_attention
|
53 |
+
self.multi_query_group_num = multi_query_group_num
|
54 |
+
self.rope_ratio = rope_ratio
|
55 |
+
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
|
56 |
+
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
57 |
+
self.fp32_residual_connection = fp32_residual_connection
|
58 |
+
super().__init__(**kwargs)
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_sample": true,
|
3 |
+
"eos_token_id": [
|
4 |
+
151329,
|
5 |
+
151336,
|
6 |
+
151338
|
7 |
+
],
|
8 |
+
"max_length": 128000,
|
9 |
+
"pad_token_id": 151329,
|
10 |
+
"temperature": 0.8,
|
11 |
+
"top_p": 0.8,
|
12 |
+
"transformers_version": "4.51.3"
|
13 |
+
}
|
model-00001-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7b9f44204eb86785a2f84cf547ae6cacc7233733faa408a7fbe6453b26b43d0
|
3 |
+
size 4930577664
|
model-00002-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5789d72de70d618f5a1156e91bdcf1560f3ed7e4d7165404ec433d7d74e241a9
|
3 |
+
size 4970581792
|
model-00003-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1338b11b9557a41a61335f79cc44bd2a54070184dcbb9977f21dc11c782733ba
|
3 |
+
size 4962191152
|
model-00004-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e77f92e2958dcc9584bdefce1ce0cd4296d12a7d4d6cfe2227e985e327c12d74
|
3 |
+
size 4895065656
|
model-00005-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f9cd233ec5f03e35380be6c9770b7b310704987af97564e332160205328aa8b
|
3 |
+
size 4895065656
|
model-00006-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af91c59b2feb0455cb419e636bbdc3446f96986bcf04b962ca73968ee8e8d29e
|
3 |
+
size 4895065656
|
model-00007-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bb230c7a7b4fa55920993274ac8d3e2b6fd7b672a94163da032d07a415fec39
|
3 |
+
size 4895065656
|
model-00008-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa0c815343495b462d8c514ca80311be9395ba2f29498eab39262416f47040db
|
3 |
+
size 3156230656
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 37599805568
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"transformer.embedding.word_embeddings.weight": "model-00001-of-00008.safetensors",
|
7 |
+
"transformer.encoder.final_layernorm.weight": "model-00008-of-00008.safetensors",
|
8 |
+
"transformer.encoder.layers.0.input_layernorm.weight": "model-00001-of-00008.safetensors",
|
9 |
+
"transformer.encoder.layers.0.mlp.dense_4h_to_h.weight": "model-00001-of-00008.safetensors",
|
10 |
+
"transformer.encoder.layers.0.mlp.dense_h_to_4h.weight": "model-00001-of-00008.safetensors",
|
11 |
+
"transformer.encoder.layers.0.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
|
12 |
+
"transformer.encoder.layers.0.self_attention.dense.weight": "model-00001-of-00008.safetensors",
|
13 |
+
"transformer.encoder.layers.0.self_attention.query_key_value.bias": "model-00001-of-00008.safetensors",
|
14 |
+
"transformer.encoder.layers.0.self_attention.query_key_value.weight": "model-00001-of-00008.safetensors",
|
15 |
+
"transformer.encoder.layers.1.input_layernorm.weight": "model-00001-of-00008.safetensors",
|
16 |
+
"transformer.encoder.layers.1.mlp.dense_4h_to_h.weight": "model-00001-of-00008.safetensors",
|
17 |
+
"transformer.encoder.layers.1.mlp.dense_h_to_4h.weight": "model-00001-of-00008.safetensors",
|
18 |
+
"transformer.encoder.layers.1.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
|
19 |
+
"transformer.encoder.layers.1.self_attention.dense.weight": "model-00001-of-00008.safetensors",
|
20 |
+
"transformer.encoder.layers.1.self_attention.query_key_value.bias": "model-00001-of-00008.safetensors",
|
21 |
+
"transformer.encoder.layers.1.self_attention.query_key_value.weight": "model-00001-of-00008.safetensors",
|
22 |
+
"transformer.encoder.layers.10.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
23 |
+
"transformer.encoder.layers.10.mlp.dense_4h_to_h.weight": "model-00003-of-00008.safetensors",
|
24 |
+
"transformer.encoder.layers.10.mlp.dense_h_to_4h.weight": "model-00003-of-00008.safetensors",
|
25 |
+
"transformer.encoder.layers.10.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
26 |
+
"transformer.encoder.layers.10.self_attention.dense.weight": "model-00003-of-00008.safetensors",
|
27 |
+
"transformer.encoder.layers.10.self_attention.query_key_value.bias": "model-00003-of-00008.safetensors",
|
28 |
+
"transformer.encoder.layers.10.self_attention.query_key_value.weight": "model-00003-of-00008.safetensors",
|
29 |
+
"transformer.encoder.layers.11.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
30 |
+
"transformer.encoder.layers.11.mlp.dense_4h_to_h.weight": "model-00003-of-00008.safetensors",
|
31 |
+
"transformer.encoder.layers.11.mlp.dense_h_to_4h.weight": "model-00003-of-00008.safetensors",
|
32 |
+
"transformer.encoder.layers.11.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
33 |
+
"transformer.encoder.layers.11.self_attention.dense.weight": "model-00003-of-00008.safetensors",
|
34 |
+
"transformer.encoder.layers.11.self_attention.query_key_value.bias": "model-00003-of-00008.safetensors",
|
35 |
+
"transformer.encoder.layers.11.self_attention.query_key_value.weight": "model-00003-of-00008.safetensors",
|
36 |
+
"transformer.encoder.layers.12.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
37 |
+
"transformer.encoder.layers.12.mlp.dense_4h_to_h.weight": "model-00003-of-00008.safetensors",
|
38 |
+
"transformer.encoder.layers.12.mlp.dense_h_to_4h.weight": "model-00003-of-00008.safetensors",
|
39 |
+
"transformer.encoder.layers.12.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
40 |
+
"transformer.encoder.layers.12.self_attention.dense.weight": "model-00003-of-00008.safetensors",
|
41 |
+
"transformer.encoder.layers.12.self_attention.query_key_value.bias": "model-00003-of-00008.safetensors",
|
42 |
+
"transformer.encoder.layers.12.self_attention.query_key_value.weight": "model-00003-of-00008.safetensors",
|
43 |
+
"transformer.encoder.layers.13.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
44 |
+
"transformer.encoder.layers.13.mlp.dense_4h_to_h.weight": "model-00003-of-00008.safetensors",
|
45 |
+
"transformer.encoder.layers.13.mlp.dense_h_to_4h.weight": "model-00003-of-00008.safetensors",
|
46 |
+
"transformer.encoder.layers.13.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
47 |
+
"transformer.encoder.layers.13.self_attention.dense.weight": "model-00003-of-00008.safetensors",
|
48 |
+
"transformer.encoder.layers.13.self_attention.query_key_value.bias": "model-00003-of-00008.safetensors",
|
49 |
+
"transformer.encoder.layers.13.self_attention.query_key_value.weight": "model-00003-of-00008.safetensors",
|
50 |
+
"transformer.encoder.layers.14.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
51 |
+
"transformer.encoder.layers.14.mlp.dense_4h_to_h.weight": "model-00003-of-00008.safetensors",
|
52 |
+
"transformer.encoder.layers.14.mlp.dense_h_to_4h.weight": "model-00003-of-00008.safetensors",
|
53 |
+
"transformer.encoder.layers.14.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
54 |
+
"transformer.encoder.layers.14.self_attention.dense.weight": "model-00003-of-00008.safetensors",
|
55 |
+
"transformer.encoder.layers.14.self_attention.query_key_value.bias": "model-00003-of-00008.safetensors",
|
56 |
+
"transformer.encoder.layers.14.self_attention.query_key_value.weight": "model-00003-of-00008.safetensors",
|
57 |
+
"transformer.encoder.layers.15.input_layernorm.weight": "model-00003-of-00008.safetensors",
|
58 |
+
"transformer.encoder.layers.15.mlp.dense_4h_to_h.weight": "model-00004-of-00008.safetensors",
|
59 |
+
"transformer.encoder.layers.15.mlp.dense_h_to_4h.weight": "model-00004-of-00008.safetensors",
|
60 |
+
"transformer.encoder.layers.15.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
61 |
+
"transformer.encoder.layers.15.self_attention.dense.weight": "model-00003-of-00008.safetensors",
|
62 |
+
"transformer.encoder.layers.15.self_attention.query_key_value.bias": "model-00003-of-00008.safetensors",
|
63 |
+
"transformer.encoder.layers.15.self_attention.query_key_value.weight": "model-00003-of-00008.safetensors",
|
64 |
+
"transformer.encoder.layers.16.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
65 |
+
"transformer.encoder.layers.16.mlp.dense_4h_to_h.weight": "model-00004-of-00008.safetensors",
|
66 |
+
"transformer.encoder.layers.16.mlp.dense_h_to_4h.weight": "model-00004-of-00008.safetensors",
|
67 |
+
"transformer.encoder.layers.16.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
68 |
+
"transformer.encoder.layers.16.self_attention.dense.weight": "model-00004-of-00008.safetensors",
|
69 |
+
"transformer.encoder.layers.16.self_attention.query_key_value.bias": "model-00004-of-00008.safetensors",
|
70 |
+
"transformer.encoder.layers.16.self_attention.query_key_value.weight": "model-00004-of-00008.safetensors",
|
71 |
+
"transformer.encoder.layers.17.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
72 |
+
"transformer.encoder.layers.17.mlp.dense_4h_to_h.weight": "model-00004-of-00008.safetensors",
|
73 |
+
"transformer.encoder.layers.17.mlp.dense_h_to_4h.weight": "model-00004-of-00008.safetensors",
|
74 |
+
"transformer.encoder.layers.17.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
75 |
+
"transformer.encoder.layers.17.self_attention.dense.weight": "model-00004-of-00008.safetensors",
|
76 |
+
"transformer.encoder.layers.17.self_attention.query_key_value.bias": "model-00004-of-00008.safetensors",
|
77 |
+
"transformer.encoder.layers.17.self_attention.query_key_value.weight": "model-00004-of-00008.safetensors",
|
78 |
+
"transformer.encoder.layers.18.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
79 |
+
"transformer.encoder.layers.18.mlp.dense_4h_to_h.weight": "model-00004-of-00008.safetensors",
|
80 |
+
"transformer.encoder.layers.18.mlp.dense_h_to_4h.weight": "model-00004-of-00008.safetensors",
|
81 |
+
"transformer.encoder.layers.18.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
82 |
+
"transformer.encoder.layers.18.self_attention.dense.weight": "model-00004-of-00008.safetensors",
|
83 |
+
"transformer.encoder.layers.18.self_attention.query_key_value.bias": "model-00004-of-00008.safetensors",
|
84 |
+
"transformer.encoder.layers.18.self_attention.query_key_value.weight": "model-00004-of-00008.safetensors",
|
85 |
+
"transformer.encoder.layers.19.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
86 |
+
"transformer.encoder.layers.19.mlp.dense_4h_to_h.weight": "model-00004-of-00008.safetensors",
|
87 |
+
"transformer.encoder.layers.19.mlp.dense_h_to_4h.weight": "model-00004-of-00008.safetensors",
|
88 |
+
"transformer.encoder.layers.19.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
89 |
+
"transformer.encoder.layers.19.self_attention.dense.weight": "model-00004-of-00008.safetensors",
|
90 |
+
"transformer.encoder.layers.19.self_attention.query_key_value.bias": "model-00004-of-00008.safetensors",
|
91 |
+
"transformer.encoder.layers.19.self_attention.query_key_value.weight": "model-00004-of-00008.safetensors",
|
92 |
+
"transformer.encoder.layers.2.input_layernorm.weight": "model-00001-of-00008.safetensors",
|
93 |
+
"transformer.encoder.layers.2.mlp.dense_4h_to_h.weight": "model-00001-of-00008.safetensors",
|
94 |
+
"transformer.encoder.layers.2.mlp.dense_h_to_4h.weight": "model-00001-of-00008.safetensors",
|
95 |
+
"transformer.encoder.layers.2.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
|
96 |
+
"transformer.encoder.layers.2.self_attention.dense.weight": "model-00001-of-00008.safetensors",
|
97 |
+
"transformer.encoder.layers.2.self_attention.query_key_value.bias": "model-00001-of-00008.safetensors",
|
98 |
+
"transformer.encoder.layers.2.self_attention.query_key_value.weight": "model-00001-of-00008.safetensors",
|
99 |
+
"transformer.encoder.layers.20.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
100 |
+
"transformer.encoder.layers.20.mlp.dense_4h_to_h.weight": "model-00004-of-00008.safetensors",
|
101 |
+
"transformer.encoder.layers.20.mlp.dense_h_to_4h.weight": "model-00004-of-00008.safetensors",
|
102 |
+
"transformer.encoder.layers.20.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
103 |
+
"transformer.encoder.layers.20.self_attention.dense.weight": "model-00004-of-00008.safetensors",
|
104 |
+
"transformer.encoder.layers.20.self_attention.query_key_value.bias": "model-00004-of-00008.safetensors",
|
105 |
+
"transformer.encoder.layers.20.self_attention.query_key_value.weight": "model-00004-of-00008.safetensors",
|
106 |
+
"transformer.encoder.layers.21.input_layernorm.weight": "model-00004-of-00008.safetensors",
|
107 |
+
"transformer.encoder.layers.21.mlp.dense_4h_to_h.weight": "model-00005-of-00008.safetensors",
|
108 |
+
"transformer.encoder.layers.21.mlp.dense_h_to_4h.weight": "model-00005-of-00008.safetensors",
|
109 |
+
"transformer.encoder.layers.21.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
110 |
+
"transformer.encoder.layers.21.self_attention.dense.weight": "model-00004-of-00008.safetensors",
|
111 |
+
"transformer.encoder.layers.21.self_attention.query_key_value.bias": "model-00004-of-00008.safetensors",
|
112 |
+
"transformer.encoder.layers.21.self_attention.query_key_value.weight": "model-00004-of-00008.safetensors",
|
113 |
+
"transformer.encoder.layers.22.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
114 |
+
"transformer.encoder.layers.22.mlp.dense_4h_to_h.weight": "model-00005-of-00008.safetensors",
|
115 |
+
"transformer.encoder.layers.22.mlp.dense_h_to_4h.weight": "model-00005-of-00008.safetensors",
|
116 |
+
"transformer.encoder.layers.22.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
117 |
+
"transformer.encoder.layers.22.self_attention.dense.weight": "model-00005-of-00008.safetensors",
|
118 |
+
"transformer.encoder.layers.22.self_attention.query_key_value.bias": "model-00005-of-00008.safetensors",
|
119 |
+
"transformer.encoder.layers.22.self_attention.query_key_value.weight": "model-00005-of-00008.safetensors",
|
120 |
+
"transformer.encoder.layers.23.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
121 |
+
"transformer.encoder.layers.23.mlp.dense_4h_to_h.weight": "model-00005-of-00008.safetensors",
|
122 |
+
"transformer.encoder.layers.23.mlp.dense_h_to_4h.weight": "model-00005-of-00008.safetensors",
|
123 |
+
"transformer.encoder.layers.23.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
124 |
+
"transformer.encoder.layers.23.self_attention.dense.weight": "model-00005-of-00008.safetensors",
|
125 |
+
"transformer.encoder.layers.23.self_attention.query_key_value.bias": "model-00005-of-00008.safetensors",
|
126 |
+
"transformer.encoder.layers.23.self_attention.query_key_value.weight": "model-00005-of-00008.safetensors",
|
127 |
+
"transformer.encoder.layers.24.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
128 |
+
"transformer.encoder.layers.24.mlp.dense_4h_to_h.weight": "model-00005-of-00008.safetensors",
|
129 |
+
"transformer.encoder.layers.24.mlp.dense_h_to_4h.weight": "model-00005-of-00008.safetensors",
|
130 |
+
"transformer.encoder.layers.24.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
131 |
+
"transformer.encoder.layers.24.self_attention.dense.weight": "model-00005-of-00008.safetensors",
|
132 |
+
"transformer.encoder.layers.24.self_attention.query_key_value.bias": "model-00005-of-00008.safetensors",
|
133 |
+
"transformer.encoder.layers.24.self_attention.query_key_value.weight": "model-00005-of-00008.safetensors",
|
134 |
+
"transformer.encoder.layers.25.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
135 |
+
"transformer.encoder.layers.25.mlp.dense_4h_to_h.weight": "model-00005-of-00008.safetensors",
|
136 |
+
"transformer.encoder.layers.25.mlp.dense_h_to_4h.weight": "model-00005-of-00008.safetensors",
|
137 |
+
"transformer.encoder.layers.25.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
138 |
+
"transformer.encoder.layers.25.self_attention.dense.weight": "model-00005-of-00008.safetensors",
|
139 |
+
"transformer.encoder.layers.25.self_attention.query_key_value.bias": "model-00005-of-00008.safetensors",
|
140 |
+
"transformer.encoder.layers.25.self_attention.query_key_value.weight": "model-00005-of-00008.safetensors",
|
141 |
+
"transformer.encoder.layers.26.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
142 |
+
"transformer.encoder.layers.26.mlp.dense_4h_to_h.weight": "model-00005-of-00008.safetensors",
|
143 |
+
"transformer.encoder.layers.26.mlp.dense_h_to_4h.weight": "model-00005-of-00008.safetensors",
|
144 |
+
"transformer.encoder.layers.26.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
145 |
+
"transformer.encoder.layers.26.self_attention.dense.weight": "model-00005-of-00008.safetensors",
|
146 |
+
"transformer.encoder.layers.26.self_attention.query_key_value.bias": "model-00005-of-00008.safetensors",
|
147 |
+
"transformer.encoder.layers.26.self_attention.query_key_value.weight": "model-00005-of-00008.safetensors",
|
148 |
+
"transformer.encoder.layers.27.input_layernorm.weight": "model-00005-of-00008.safetensors",
|
149 |
+
"transformer.encoder.layers.27.mlp.dense_4h_to_h.weight": "model-00006-of-00008.safetensors",
|
150 |
+
"transformer.encoder.layers.27.mlp.dense_h_to_4h.weight": "model-00006-of-00008.safetensors",
|
151 |
+
"transformer.encoder.layers.27.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
152 |
+
"transformer.encoder.layers.27.self_attention.dense.weight": "model-00005-of-00008.safetensors",
|
153 |
+
"transformer.encoder.layers.27.self_attention.query_key_value.bias": "model-00005-of-00008.safetensors",
|
154 |
+
"transformer.encoder.layers.27.self_attention.query_key_value.weight": "model-00005-of-00008.safetensors",
|
155 |
+
"transformer.encoder.layers.28.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
156 |
+
"transformer.encoder.layers.28.mlp.dense_4h_to_h.weight": "model-00006-of-00008.safetensors",
|
157 |
+
"transformer.encoder.layers.28.mlp.dense_h_to_4h.weight": "model-00006-of-00008.safetensors",
|
158 |
+
"transformer.encoder.layers.28.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
159 |
+
"transformer.encoder.layers.28.self_attention.dense.weight": "model-00006-of-00008.safetensors",
|
160 |
+
"transformer.encoder.layers.28.self_attention.query_key_value.bias": "model-00006-of-00008.safetensors",
|
161 |
+
"transformer.encoder.layers.28.self_attention.query_key_value.weight": "model-00006-of-00008.safetensors",
|
162 |
+
"transformer.encoder.layers.29.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
163 |
+
"transformer.encoder.layers.29.mlp.dense_4h_to_h.weight": "model-00006-of-00008.safetensors",
|
164 |
+
"transformer.encoder.layers.29.mlp.dense_h_to_4h.weight": "model-00006-of-00008.safetensors",
|
165 |
+
"transformer.encoder.layers.29.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
166 |
+
"transformer.encoder.layers.29.self_attention.dense.weight": "model-00006-of-00008.safetensors",
|
167 |
+
"transformer.encoder.layers.29.self_attention.query_key_value.bias": "model-00006-of-00008.safetensors",
|
168 |
+
"transformer.encoder.layers.29.self_attention.query_key_value.weight": "model-00006-of-00008.safetensors",
|
169 |
+
"transformer.encoder.layers.3.input_layernorm.weight": "model-00001-of-00008.safetensors",
|
170 |
+
"transformer.encoder.layers.3.mlp.dense_4h_to_h.weight": "model-00002-of-00008.safetensors",
|
171 |
+
"transformer.encoder.layers.3.mlp.dense_h_to_4h.weight": "model-00002-of-00008.safetensors",
|
172 |
+
"transformer.encoder.layers.3.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
173 |
+
"transformer.encoder.layers.3.self_attention.dense.weight": "model-00002-of-00008.safetensors",
|
174 |
+
"transformer.encoder.layers.3.self_attention.query_key_value.bias": "model-00002-of-00008.safetensors",
|
175 |
+
"transformer.encoder.layers.3.self_attention.query_key_value.weight": "model-00002-of-00008.safetensors",
|
176 |
+
"transformer.encoder.layers.30.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
177 |
+
"transformer.encoder.layers.30.mlp.dense_4h_to_h.weight": "model-00006-of-00008.safetensors",
|
178 |
+
"transformer.encoder.layers.30.mlp.dense_h_to_4h.weight": "model-00006-of-00008.safetensors",
|
179 |
+
"transformer.encoder.layers.30.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
180 |
+
"transformer.encoder.layers.30.self_attention.dense.weight": "model-00006-of-00008.safetensors",
|
181 |
+
"transformer.encoder.layers.30.self_attention.query_key_value.bias": "model-00006-of-00008.safetensors",
|
182 |
+
"transformer.encoder.layers.30.self_attention.query_key_value.weight": "model-00006-of-00008.safetensors",
|
183 |
+
"transformer.encoder.layers.31.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
184 |
+
"transformer.encoder.layers.31.mlp.dense_4h_to_h.weight": "model-00006-of-00008.safetensors",
|
185 |
+
"transformer.encoder.layers.31.mlp.dense_h_to_4h.weight": "model-00006-of-00008.safetensors",
|
186 |
+
"transformer.encoder.layers.31.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
187 |
+
"transformer.encoder.layers.31.self_attention.dense.weight": "model-00006-of-00008.safetensors",
|
188 |
+
"transformer.encoder.layers.31.self_attention.query_key_value.bias": "model-00006-of-00008.safetensors",
|
189 |
+
"transformer.encoder.layers.31.self_attention.query_key_value.weight": "model-00006-of-00008.safetensors",
|
190 |
+
"transformer.encoder.layers.32.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
191 |
+
"transformer.encoder.layers.32.mlp.dense_4h_to_h.weight": "model-00006-of-00008.safetensors",
|
192 |
+
"transformer.encoder.layers.32.mlp.dense_h_to_4h.weight": "model-00006-of-00008.safetensors",
|
193 |
+
"transformer.encoder.layers.32.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
194 |
+
"transformer.encoder.layers.32.self_attention.dense.weight": "model-00006-of-00008.safetensors",
|
195 |
+
"transformer.encoder.layers.32.self_attention.query_key_value.bias": "model-00006-of-00008.safetensors",
|
196 |
+
"transformer.encoder.layers.32.self_attention.query_key_value.weight": "model-00006-of-00008.safetensors",
|
197 |
+
"transformer.encoder.layers.33.input_layernorm.weight": "model-00006-of-00008.safetensors",
|
198 |
+
"transformer.encoder.layers.33.mlp.dense_4h_to_h.weight": "model-00007-of-00008.safetensors",
|
199 |
+
"transformer.encoder.layers.33.mlp.dense_h_to_4h.weight": "model-00007-of-00008.safetensors",
|
200 |
+
"transformer.encoder.layers.33.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
201 |
+
"transformer.encoder.layers.33.self_attention.dense.weight": "model-00006-of-00008.safetensors",
|
202 |
+
"transformer.encoder.layers.33.self_attention.query_key_value.bias": "model-00006-of-00008.safetensors",
|
203 |
+
"transformer.encoder.layers.33.self_attention.query_key_value.weight": "model-00006-of-00008.safetensors",
|
204 |
+
"transformer.encoder.layers.34.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
205 |
+
"transformer.encoder.layers.34.mlp.dense_4h_to_h.weight": "model-00007-of-00008.safetensors",
|
206 |
+
"transformer.encoder.layers.34.mlp.dense_h_to_4h.weight": "model-00007-of-00008.safetensors",
|
207 |
+
"transformer.encoder.layers.34.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
208 |
+
"transformer.encoder.layers.34.self_attention.dense.weight": "model-00007-of-00008.safetensors",
|
209 |
+
"transformer.encoder.layers.34.self_attention.query_key_value.bias": "model-00007-of-00008.safetensors",
|
210 |
+
"transformer.encoder.layers.34.self_attention.query_key_value.weight": "model-00007-of-00008.safetensors",
|
211 |
+
"transformer.encoder.layers.35.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
212 |
+
"transformer.encoder.layers.35.mlp.dense_4h_to_h.weight": "model-00007-of-00008.safetensors",
|
213 |
+
"transformer.encoder.layers.35.mlp.dense_h_to_4h.weight": "model-00007-of-00008.safetensors",
|
214 |
+
"transformer.encoder.layers.35.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
215 |
+
"transformer.encoder.layers.35.self_attention.dense.weight": "model-00007-of-00008.safetensors",
|
216 |
+
"transformer.encoder.layers.35.self_attention.query_key_value.bias": "model-00007-of-00008.safetensors",
|
217 |
+
"transformer.encoder.layers.35.self_attention.query_key_value.weight": "model-00007-of-00008.safetensors",
|
218 |
+
"transformer.encoder.layers.36.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
219 |
+
"transformer.encoder.layers.36.mlp.dense_4h_to_h.weight": "model-00007-of-00008.safetensors",
|
220 |
+
"transformer.encoder.layers.36.mlp.dense_h_to_4h.weight": "model-00007-of-00008.safetensors",
|
221 |
+
"transformer.encoder.layers.36.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
222 |
+
"transformer.encoder.layers.36.self_attention.dense.weight": "model-00007-of-00008.safetensors",
|
223 |
+
"transformer.encoder.layers.36.self_attention.query_key_value.bias": "model-00007-of-00008.safetensors",
|
224 |
+
"transformer.encoder.layers.36.self_attention.query_key_value.weight": "model-00007-of-00008.safetensors",
|
225 |
+
"transformer.encoder.layers.37.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
226 |
+
"transformer.encoder.layers.37.mlp.dense_4h_to_h.weight": "model-00007-of-00008.safetensors",
|
227 |
+
"transformer.encoder.layers.37.mlp.dense_h_to_4h.weight": "model-00007-of-00008.safetensors",
|
228 |
+
"transformer.encoder.layers.37.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
229 |
+
"transformer.encoder.layers.37.self_attention.dense.weight": "model-00007-of-00008.safetensors",
|
230 |
+
"transformer.encoder.layers.37.self_attention.query_key_value.bias": "model-00007-of-00008.safetensors",
|
231 |
+
"transformer.encoder.layers.37.self_attention.query_key_value.weight": "model-00007-of-00008.safetensors",
|
232 |
+
"transformer.encoder.layers.38.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
233 |
+
"transformer.encoder.layers.38.mlp.dense_4h_to_h.weight": "model-00007-of-00008.safetensors",
|
234 |
+
"transformer.encoder.layers.38.mlp.dense_h_to_4h.weight": "model-00007-of-00008.safetensors",
|
235 |
+
"transformer.encoder.layers.38.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
236 |
+
"transformer.encoder.layers.38.self_attention.dense.weight": "model-00007-of-00008.safetensors",
|
237 |
+
"transformer.encoder.layers.38.self_attention.query_key_value.bias": "model-00007-of-00008.safetensors",
|
238 |
+
"transformer.encoder.layers.38.self_attention.query_key_value.weight": "model-00007-of-00008.safetensors",
|
239 |
+
"transformer.encoder.layers.39.input_layernorm.weight": "model-00007-of-00008.safetensors",
|
240 |
+
"transformer.encoder.layers.39.mlp.dense_4h_to_h.weight": "model-00008-of-00008.safetensors",
|
241 |
+
"transformer.encoder.layers.39.mlp.dense_h_to_4h.weight": "model-00008-of-00008.safetensors",
|
242 |
+
"transformer.encoder.layers.39.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
243 |
+
"transformer.encoder.layers.39.self_attention.dense.weight": "model-00007-of-00008.safetensors",
|
244 |
+
"transformer.encoder.layers.39.self_attention.query_key_value.bias": "model-00007-of-00008.safetensors",
|
245 |
+
"transformer.encoder.layers.39.self_attention.query_key_value.weight": "model-00007-of-00008.safetensors",
|
246 |
+
"transformer.encoder.layers.4.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
247 |
+
"transformer.encoder.layers.4.mlp.dense_4h_to_h.weight": "model-00002-of-00008.safetensors",
|
248 |
+
"transformer.encoder.layers.4.mlp.dense_h_to_4h.weight": "model-00002-of-00008.safetensors",
|
249 |
+
"transformer.encoder.layers.4.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
250 |
+
"transformer.encoder.layers.4.self_attention.dense.weight": "model-00002-of-00008.safetensors",
|
251 |
+
"transformer.encoder.layers.4.self_attention.query_key_value.bias": "model-00002-of-00008.safetensors",
|
252 |
+
"transformer.encoder.layers.4.self_attention.query_key_value.weight": "model-00002-of-00008.safetensors",
|
253 |
+
"transformer.encoder.layers.5.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
254 |
+
"transformer.encoder.layers.5.mlp.dense_4h_to_h.weight": "model-00002-of-00008.safetensors",
|
255 |
+
"transformer.encoder.layers.5.mlp.dense_h_to_4h.weight": "model-00002-of-00008.safetensors",
|
256 |
+
"transformer.encoder.layers.5.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
257 |
+
"transformer.encoder.layers.5.self_attention.dense.weight": "model-00002-of-00008.safetensors",
|
258 |
+
"transformer.encoder.layers.5.self_attention.query_key_value.bias": "model-00002-of-00008.safetensors",
|
259 |
+
"transformer.encoder.layers.5.self_attention.query_key_value.weight": "model-00002-of-00008.safetensors",
|
260 |
+
"transformer.encoder.layers.6.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
261 |
+
"transformer.encoder.layers.6.mlp.dense_4h_to_h.weight": "model-00002-of-00008.safetensors",
|
262 |
+
"transformer.encoder.layers.6.mlp.dense_h_to_4h.weight": "model-00002-of-00008.safetensors",
|
263 |
+
"transformer.encoder.layers.6.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
264 |
+
"transformer.encoder.layers.6.self_attention.dense.weight": "model-00002-of-00008.safetensors",
|
265 |
+
"transformer.encoder.layers.6.self_attention.query_key_value.bias": "model-00002-of-00008.safetensors",
|
266 |
+
"transformer.encoder.layers.6.self_attention.query_key_value.weight": "model-00002-of-00008.safetensors",
|
267 |
+
"transformer.encoder.layers.7.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
268 |
+
"transformer.encoder.layers.7.mlp.dense_4h_to_h.weight": "model-00002-of-00008.safetensors",
|
269 |
+
"transformer.encoder.layers.7.mlp.dense_h_to_4h.weight": "model-00002-of-00008.safetensors",
|
270 |
+
"transformer.encoder.layers.7.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
271 |
+
"transformer.encoder.layers.7.self_attention.dense.weight": "model-00002-of-00008.safetensors",
|
272 |
+
"transformer.encoder.layers.7.self_attention.query_key_value.bias": "model-00002-of-00008.safetensors",
|
273 |
+
"transformer.encoder.layers.7.self_attention.query_key_value.weight": "model-00002-of-00008.safetensors",
|
274 |
+
"transformer.encoder.layers.8.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
275 |
+
"transformer.encoder.layers.8.mlp.dense_4h_to_h.weight": "model-00002-of-00008.safetensors",
|
276 |
+
"transformer.encoder.layers.8.mlp.dense_h_to_4h.weight": "model-00002-of-00008.safetensors",
|
277 |
+
"transformer.encoder.layers.8.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
278 |
+
"transformer.encoder.layers.8.self_attention.dense.weight": "model-00002-of-00008.safetensors",
|
279 |
+
"transformer.encoder.layers.8.self_attention.query_key_value.bias": "model-00002-of-00008.safetensors",
|
280 |
+
"transformer.encoder.layers.8.self_attention.query_key_value.weight": "model-00002-of-00008.safetensors",
|
281 |
+
"transformer.encoder.layers.9.input_layernorm.weight": "model-00002-of-00008.safetensors",
|
282 |
+
"transformer.encoder.layers.9.mlp.dense_4h_to_h.weight": "model-00003-of-00008.safetensors",
|
283 |
+
"transformer.encoder.layers.9.mlp.dense_h_to_4h.weight": "model-00003-of-00008.safetensors",
|
284 |
+
"transformer.encoder.layers.9.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
285 |
+
"transformer.encoder.layers.9.self_attention.dense.weight": "model-00003-of-00008.safetensors",
|
286 |
+
"transformer.encoder.layers.9.self_attention.query_key_value.bias": "model-00002-of-00008.safetensors",
|
287 |
+
"transformer.encoder.layers.9.self_attention.query_key_value.weight": "model-00002-of-00008.safetensors",
|
288 |
+
"transformer.output_layer.weight": "model-00008-of-00008.safetensors",
|
289 |
+
"transformer.rotary_pos_emb.inv_freq": "model-00001-of-00008.safetensors"
|
290 |
+
}
|
291 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|endoftext|>",
|
4 |
+
"[MASK]",
|
5 |
+
"[gMASK]",
|
6 |
+
"[sMASK]",
|
7 |
+
"<sop>",
|
8 |
+
"<eop>",
|
9 |
+
"<|system|>",
|
10 |
+
"<|user|>",
|
11 |
+
"<|assistant|>",
|
12 |
+
"<|observation|>",
|
13 |
+
"<|begin_of_image|>",
|
14 |
+
"<|end_of_image|>",
|
15 |
+
"<|begin_of_video|>",
|
16 |
+
"<|end_of_video|>"
|
17 |
+
],
|
18 |
+
"eos_token": {
|
19 |
+
"content": "<|endoftext|>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
},
|
25 |
+
"pad_token": {
|
26 |
+
"content": "<|endoftext|>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
}
|
32 |
+
}
|
tokenization_chatglm.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import regex as re
|
2 |
+
import base64
|
3 |
+
import os
|
4 |
+
import tiktoken
|
5 |
+
from typing import List, Optional, Union, Dict
|
6 |
+
from transformers import PreTrainedTokenizer
|
7 |
+
from transformers.utils import PaddingStrategy
|
8 |
+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
9 |
+
|
10 |
+
|
11 |
+
class ChatGLM4Tokenizer(PreTrainedTokenizer):
|
12 |
+
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
13 |
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
14 |
+
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
vocab_file,
|
18 |
+
clean_up_tokenization_spaces=False,
|
19 |
+
**kwargs
|
20 |
+
):
|
21 |
+
self.name = "GLM4Tokenizer"
|
22 |
+
self.vocab_file = vocab_file
|
23 |
+
pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
24 |
+
self.pat_str = re.compile(pat_str)
|
25 |
+
|
26 |
+
mergeable_ranks = {}
|
27 |
+
with open(vocab_file) as f:
|
28 |
+
for line in f:
|
29 |
+
token, rank = line.strip().split()
|
30 |
+
rank = int(rank)
|
31 |
+
token = base64.b64decode(token)
|
32 |
+
mergeable_ranks[token] = rank
|
33 |
+
|
34 |
+
self.mergeable_ranks = mergeable_ranks
|
35 |
+
|
36 |
+
self.tokenizer = tiktoken.Encoding(
|
37 |
+
name="my_tokenizer",
|
38 |
+
pat_str=pat_str,
|
39 |
+
mergeable_ranks=mergeable_ranks,
|
40 |
+
special_tokens={}
|
41 |
+
)
|
42 |
+
self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
|
43 |
+
self.n_words = len(self.decoder)
|
44 |
+
|
45 |
+
super().__init__(
|
46 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
47 |
+
**kwargs
|
48 |
+
)
|
49 |
+
|
50 |
+
@property
|
51 |
+
def vocab_size(self):
|
52 |
+
return self.n_words
|
53 |
+
|
54 |
+
def get_vocab(self):
|
55 |
+
""" Returns vocab as a dict """
|
56 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
57 |
+
vocab.update(self.added_tokens_encoder)
|
58 |
+
return vocab
|
59 |
+
|
60 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str:
|
61 |
+
"""
|
62 |
+
Converts a sequence of tokens in a single string.
|
63 |
+
"""
|
64 |
+
text = ""
|
65 |
+
temp = b""
|
66 |
+
for t in tokens:
|
67 |
+
if isinstance(t, int):
|
68 |
+
t = chr(t)
|
69 |
+
if isinstance(t, str):
|
70 |
+
if temp:
|
71 |
+
text += temp.decode("utf-8", errors="replace")
|
72 |
+
elif isinstance(t, bytes):
|
73 |
+
temp += t
|
74 |
+
else:
|
75 |
+
raise TypeError("token should only be of type int, bytes or str")
|
76 |
+
if temp:
|
77 |
+
text += temp.decode("utf-8", errors="replace")
|
78 |
+
return text
|
79 |
+
|
80 |
+
def _tokenize(self, text, **kwargs):
|
81 |
+
tokens = []
|
82 |
+
ids = self.tokenizer.encode(text)
|
83 |
+
for t in ids:
|
84 |
+
tokens.append(self.decoder[t])
|
85 |
+
return tokens
|
86 |
+
|
87 |
+
def _convert_token_to_id(self, token):
|
88 |
+
""" Converts a token (str) in an id using the vocab. """
|
89 |
+
return self.mergeable_ranks[token]
|
90 |
+
|
91 |
+
def _convert_id_to_token(self, index):
|
92 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
93 |
+
return self.decoder.get(index, "")
|
94 |
+
|
95 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
96 |
+
"""
|
97 |
+
Save the vocabulary and special tokens file to a directory.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
save_directory (`str`):
|
101 |
+
The directory in which to save the vocabulary.
|
102 |
+
filename_prefix (`str`, *optional*):
|
103 |
+
An optional prefix to add to the named of the saved files.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
`Tuple(str)`: Paths to the files saved.
|
107 |
+
"""
|
108 |
+
if os.path.isdir(save_directory):
|
109 |
+
vocab_file = os.path.join(
|
110 |
+
save_directory, self.vocab_files_names["vocab_file"]
|
111 |
+
)
|
112 |
+
else:
|
113 |
+
vocab_file = save_directory
|
114 |
+
|
115 |
+
with open(self.vocab_file, 'rb') as fin:
|
116 |
+
proto_str = fin.read()
|
117 |
+
|
118 |
+
with open(vocab_file, "wb") as writer:
|
119 |
+
writer.write(proto_str)
|
120 |
+
|
121 |
+
return (vocab_file,)
|
122 |
+
|
123 |
+
def get_prefix_tokens(self):
|
124 |
+
prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
|
125 |
+
return prefix_tokens
|
126 |
+
|
127 |
+
def build_single_message(self, role, metadata, message, tokenize=True):
|
128 |
+
assert role in ["system", "user", "assistant", "observation"], role
|
129 |
+
if tokenize:
|
130 |
+
role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
|
131 |
+
disallowed_special=())
|
132 |
+
message_tokens = self.tokenizer.encode(message, disallowed_special=())
|
133 |
+
tokens = role_tokens + message_tokens
|
134 |
+
return tokens
|
135 |
+
else:
|
136 |
+
return str(f"<|{role}|>{metadata}\n{message}")
|
137 |
+
|
138 |
+
def build_inputs_with_special_tokens(
|
139 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
140 |
+
) -> List[int]:
|
141 |
+
"""
|
142 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
143 |
+
adding special tokens. A BERT sequence has the following format:
|
144 |
+
|
145 |
+
- single sequence: `[CLS] X [SEP]`
|
146 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
147 |
+
|
148 |
+
Args:
|
149 |
+
token_ids_0 (`List[int]`):
|
150 |
+
List of IDs to which the special tokens will be added.
|
151 |
+
token_ids_1 (`List[int]`, *optional*):
|
152 |
+
Optional second list of IDs for sequence pairs.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
156 |
+
"""
|
157 |
+
prefix_tokens = self.get_prefix_tokens()
|
158 |
+
token_ids_0 = prefix_tokens + token_ids_0
|
159 |
+
if token_ids_1 is not None:
|
160 |
+
token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")]
|
161 |
+
return token_ids_0
|
162 |
+
|
163 |
+
def _pad(
|
164 |
+
self,
|
165 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
166 |
+
max_length: Optional[int] = None,
|
167 |
+
padding_side: str = "left",
|
168 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
169 |
+
pad_to_multiple_of: Optional[int] = None,
|
170 |
+
return_attention_mask: Optional[bool] = None,
|
171 |
+
) -> dict:
|
172 |
+
"""
|
173 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
174 |
+
|
175 |
+
Args:
|
176 |
+
encoded_inputs:
|
177 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
178 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
179 |
+
Will truncate by taking into account the special tokens.
|
180 |
+
padding_strategy: PaddingStrategy to use for padding.
|
181 |
+
|
182 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
183 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
184 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
185 |
+
The tokenizer padding sides are defined in self.padding_side:
|
186 |
+
|
187 |
+
- 'left': pads on the left of the sequences
|
188 |
+
- 'right': pads on the right of the sequences
|
189 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
190 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
191 |
+
`>= 7.5` (Volta).
|
192 |
+
return_attention_mask:
|
193 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
194 |
+
"""
|
195 |
+
# Load from model defaults
|
196 |
+
|
197 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
198 |
+
seq_length = len(required_input)
|
199 |
+
|
200 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
201 |
+
max_length = len(required_input)
|
202 |
+
|
203 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
204 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
205 |
+
|
206 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
207 |
+
|
208 |
+
# Initialize attention mask if not present.
|
209 |
+
if "attention_mask" not in encoded_inputs:
|
210 |
+
encoded_inputs["attention_mask"] = [1] * seq_length
|
211 |
+
|
212 |
+
if "position_ids" not in encoded_inputs:
|
213 |
+
encoded_inputs["position_ids"] = list(range(seq_length))
|
214 |
+
|
215 |
+
if needs_to_be_padded:
|
216 |
+
difference = max_length - len(required_input)
|
217 |
+
|
218 |
+
if "attention_mask" in encoded_inputs:
|
219 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
220 |
+
if "position_ids" in encoded_inputs:
|
221 |
+
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
222 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
223 |
+
|
224 |
+
return encoded_inputs
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a493598071550244b2ee7f26118f3edec2150b9dfa967929a99052ac83fe716
|
3 |
+
size 2623634
|
tokenizer_config.json
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"151329": {
|
4 |
+
"content": "<|endoftext|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"151330": {
|
12 |
+
"content": "[MASK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"151331": {
|
20 |
+
"content": "[gMASK]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"151332": {
|
28 |
+
"content": "[sMASK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"151333": {
|
36 |
+
"content": "<sop>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"151334": {
|
44 |
+
"content": "<eop>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"151335": {
|
52 |
+
"content": "<|system|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"151336": {
|
60 |
+
"content": "<|user|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"151337": {
|
68 |
+
"content": "<|assistant|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"151338": {
|
76 |
+
"content": "<|observation|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"151339": {
|
84 |
+
"content": "<|begin_of_image|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"151340": {
|
92 |
+
"content": "<|end_of_image|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"151341": {
|
100 |
+
"content": "<|begin_of_video|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"151342": {
|
108 |
+
"content": "<|end_of_video|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
}
|
115 |
+
},
|
116 |
+
"additional_special_tokens": [
|
117 |
+
"<|endoftext|>",
|
118 |
+
"[MASK]",
|
119 |
+
"[gMASK]",
|
120 |
+
"[sMASK]",
|
121 |
+
"<sop>",
|
122 |
+
"<eop>",
|
123 |
+
"<|system|>",
|
124 |
+
"<|user|>",
|
125 |
+
"<|assistant|>",
|
126 |
+
"<|observation|>",
|
127 |
+
"<|begin_of_image|>",
|
128 |
+
"<|end_of_image|>",
|
129 |
+
"<|begin_of_video|>",
|
130 |
+
"<|end_of_video|>"
|
131 |
+
],
|
132 |
+
"auto_map": {
|
133 |
+
"AutoTokenizer": [
|
134 |
+
"tokenization_chatglm.ChatGLM4Tokenizer",
|
135 |
+
null
|
136 |
+
]
|
137 |
+
},
|
138 |
+
"chat_template": "{{ '[gMASK]<sop>' }}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<|system|>\n' + system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|assistant|>' }}{% elif message['role'] == 'assistant' %}{{ '\n' + content }}{% endif %}{% endfor %}",
|
139 |
+
"clean_up_tokenization_spaces": false,
|
140 |
+
"do_lower_case": false,
|
141 |
+
"eos_token": "<|endoftext|>",
|
142 |
+
"extra_special_tokens": {},
|
143 |
+
"model_max_length": 128000,
|
144 |
+
"pad_token": "<|endoftext|>",
|
145 |
+
"padding_side": "right",
|
146 |
+
"remove_space": false,
|
147 |
+
"split_special_tokens": false,
|
148 |
+
"tokenizer_class": "ChatGLM4Tokenizer"
|
149 |
+
}
|