worsty commited on
Commit
0ae9cd2
·
1 Parent(s): d26682d

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.76 +/- 1.32
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2501b1de53872dc469bd157d9b330416390155cf90f337527f748c1425c605a
3
+ size 108075
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9e17af3c70>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f9e17af8ac0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1682869577067730529,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhN3MPkS5pryw/xQ/hN3MPkS5pryw/xQ/hN3MPkS5pryw/xQ/hN3MPkS5pryw/xQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJOKEPoJYH7/AyHO/aD2AP09TIr9tCWe/DBsQv3L8Rr8mt6U/012eP9TRoD6gJVM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACE3cw+RLmmvLD/FD/J/GU8/lU0uuMVhjuE3cw+RLmmvLD/FD/J/GU8/lU0uuMVhjuE3cw+RLmmvLD/FD/J/GU8/lU0uuMVhjuE3cw+RLmmvLD/FD/J/GU8/lU0uuMVhjuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.40012753 -0.02035201 0.5820265 ]\n [ 0.40012753 -0.02035201 0.5820265 ]\n [ 0.40012753 -0.02035201 0.5820265 ]\n [ 0.40012753 -0.02035201 0.5820265 ]]",
38
+ "desired_goal": "[[ 0.25953782 -0.6224443 -0.95228195]\n [ 1.001874 -0.6340837 -0.9024876 ]\n [-0.5629127 -0.7772895 1.2946517 ]\n [ 1.2372383 0.31410086 0.82479286]]",
39
+ "observation": "[[ 0.40012753 -0.02035201 0.5820265 0.01403732 -0.00068793 0.00409196]\n [ 0.40012753 -0.02035201 0.5820265 0.01403732 -0.00068793 0.00409196]\n [ 0.40012753 -0.02035201 0.5820265 0.01403732 -0.00068793 0.00409196]\n [ 0.40012753 -0.02035201 0.5820265 0.01403732 -0.00068793 0.00409196]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA17cKPonrFD04cdY8d/D6vIDQu73R2ZQ+3TNnPf+Aej3m02w+XVRwvZ2SJTwa2lM9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.13546692 0.03635744 0.02617703]\n [-0.03063224 -0.09170628 0.2907243 ]\n [ 0.05644595 0.06115818 0.23127708]\n [-0.05867421 0.01010576 0.05172167]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfsfw2M9yEMCUhpRSlIwBbJRLMowBdJRHQKZZ7fG+9J11fZQoaAZoCWgPQwiBCdy6m8cYwJSGlFKUaBVLMmgWR0CmWY4KpkwwdX2UKGgGaAloD0MIxw2/m27ZAsCUhpRSlGgVSzJoFkdAplkw/keZHHV9lChoBmgJaA9DCH5v05/9KAXAlIaUUpRoFUsyaBZHQKZY0uM+/xl1fZQoaAZoCWgPQwi95erHJtkUwJSGlFKUaBVLMmgWR0CmWx71qWTpdX2UKGgGaAloD0MIn3JMFvcf9L+UhpRSlGgVSzJoFkdAplq+4EwFknV9lChoBmgJaA9DCAIrhxbZHhbAlIaUUpRoFUsyaBZHQKZaYoVmBe51fZQoaAZoCWgPQwh9PsqIC5ARwJSGlFKUaBVLMmgWR0CmWgSBkI5YdX2UKGgGaAloD0MIPdLgtrawAcCUhpRSlGgVSzJoFkdAplw+f7Jnx3V9lChoBmgJaA9DCBrAWyBBkQLAlIaUUpRoFUsyaBZHQKZb3qi48U51fZQoaAZoCWgPQwj8HYoCfaIEwJSGlFKUaBVLMmgWR0CmW4GozeoDdX2UKGgGaAloD0MIRgvQtprFEMCUhpRSlGgVSzJoFkdAplsjm0VrRHV9lChoBmgJaA9DCL/udOeJZwDAlIaUUpRoFUsyaBZHQKZdVRplBhR1fZQoaAZoCWgPQwiDiqpf6ZwMwJSGlFKUaBVLMmgWR0CmXPUahpQDdX2UKGgGaAloD0MIchjMXyGzC8CUhpRSlGgVSzJoFkdAplyX5xiobXV9lChoBmgJaA9DCDL/6Js0zQjAlIaUUpRoFUsyaBZHQKZcOeTV2A51fZQoaAZoCWgPQwgjoS3nUjwQwJSGlFKUaBVLMmgWR0CmXmWq94/vdX2UKGgGaAloD0MIrDlAMEcP7b+UhpRSlGgVSzJoFkdApl4Fm8M/hXV9lChoBmgJaA9DCJ6ayw2GevC/lIaUUpRoFUsyaBZHQKZdqGr0aqF1fZQoaAZoCWgPQwiDTDJyFjYOwJSGlFKUaBVLMmgWR0CmXUp2MbWFdX2UKGgGaAloD0MIgh3/BYLgEsCUhpRSlGgVSzJoFkdApl+fQY1pCnV9lChoBmgJaA9DCOrouBrZtQfAlIaUUpRoFUsyaBZHQKZfP1bqyGB1fZQoaAZoCWgPQwhlVu9wO/T4v5SGlFKUaBVLMmgWR0CmXuI3BHkMdX2UKGgGaAloD0MI0SSxpNxdAMCUhpRSlGgVSzJoFkdApl6EHpr1unV9lChoBmgJaA9DCBFUjV4N0AHAlIaUUpRoFUsyaBZHQKZgsW0qpcZ1fZQoaAZoCWgPQwg5e2e0VWkBwJSGlFKUaBVLMmgWR0CmYFF10T11dX2UKGgGaAloD0MIKAtfX+uSE8CUhpRSlGgVSzJoFkdApl/0XizcAXV9lChoBmgJaA9DCKGfqdctUhDAlIaUUpRoFUsyaBZHQKZfln6l+E11fZQoaAZoCWgPQwh3ZKw2/y8BwJSGlFKUaBVLMmgWR0CmYceRHPNWdX2UKGgGaAloD0MISDfCoiKuGMCUhpRSlGgVSzJoFkdApmFnh4t6HHV9lChoBmgJaA9DCLWIKCZvsBTAlIaUUpRoFUsyaBZHQKZhCofCAMF1fZQoaAZoCWgPQwggJ0wYzYr0v5SGlFKUaBVLMmgWR0CmYKx/NJOGdX2UKGgGaAloD0MIrprniHyX9L+UhpRSlGgVSzJoFkdApmL0BhhH9XV9lChoBmgJaA9DCODzwwjhEfG/lIaUUpRoFUsyaBZHQKZilChvitJ1fZQoaAZoCWgPQwjoEaPnFioTwJSGlFKUaBVLMmgWR0CmYjcmKIi1dX2UKGgGaAloD0MIn+bkRSag/r+UhpRSlGgVSzJoFkdApmHZQHiWFHV9lChoBmgJaA9DCJ4JTRJLagnAlIaUUpRoFUsyaBZHQKZkKXAuZkV1fZQoaAZoCWgPQwjerSzRWQYdwJSGlFKUaBVLMmgWR0CmY8oz3yqddX2UKGgGaAloD0MITkUqjC1kA8CUhpRSlGgVSzJoFkdApmNtG3F1jnV9lChoBmgJaA9DCDjXMEPjqRPAlIaUUpRoFUsyaBZHQKZjDwXqJMx1fZQoaAZoCWgPQwgtlExO7awAwJSGlFKUaBVLMmgWR0CmZcxkd3jddX2UKGgGaAloD0MIJQfsavLUDcCUhpRSlGgVSzJoFkdApmVtGPPszHV9lChoBmgJaA9DCII4DycwLRLAlIaUUpRoFUsyaBZHQKZlENhE0BR1fZQoaAZoCWgPQwjXw5eJIiQDwJSGlFKUaBVLMmgWR0CmZLNz8xbjdX2UKGgGaAloD0MIgSIWMexw8r+UhpRSlGgVSzJoFkdApmeHJ3gUDnV9lChoBmgJaA9DCOUMxR1v8g/AlIaUUpRoFUsyaBZHQKZnKE3bVSZ1fZQoaAZoCWgPQwiFzJVBtUEAwJSGlFKUaBVLMmgWR0CmZswfhddFdX2UKGgGaAloD0MIv9U6cTkOFsCUhpRSlGgVSzJoFkdApmZvFDOTq3V9lChoBmgJaA9DCEH1DyIZsgLAlIaUUpRoFUsyaBZHQKZpXSHdoFp1fZQoaAZoCWgPQwhZbJOKxvoBwJSGlFKUaBVLMmgWR0CmaP4xcmjTdX2UKGgGaAloD0MIqdvZVx4EEsCUhpRSlGgVSzJoFkdApmih9E1EVnV9lChoBmgJaA9DCGE3bFuUeRPAlIaUUpRoFUsyaBZHQKZoRS5y2hJ1fZQoaAZoCWgPQwjGNNO9Tir9v5SGlFKUaBVLMmgWR0Cmay50r9VFdX2UKGgGaAloD0MIPKWD9X+O/b+UhpRSlGgVSzJoFkdApmrPYe1a4nV9lChoBmgJaA9DCJFkVu9we/m/lIaUUpRoFUsyaBZHQKZqc0ALiMp1fZQoaAZoCWgPQwgN38K68R4QwJSGlFKUaBVLMmgWR0CmahZc9nscdX2UKGgGaAloD0MI2o6pu7KbEsCUhpRSlGgVSzJoFkdApm0eNrCWNXV9lChoBmgJaA9DCC+i7Zi66xLAlIaUUpRoFUsyaBZHQKZsvy8zyjJ1fZQoaAZoCWgPQwg/V1uxv4wJwJSGlFKUaBVLMmgWR0CmbGMOXmeUdX2UKGgGaAloD0MIA3rhzoUxCcCUhpRSlGgVSzJoFkdApmwF9ORDC3V9lChoBmgJaA9DCHalZaTe8wrAlIaUUpRoFUsyaBZHQKZuSTKT0QN1fZQoaAZoCWgPQwiO5sjKL4P7v5SGlFKUaBVLMmgWR0CmbelGoaUBdX2UKGgGaAloD0MISino9pLmDMCUhpRSlGgVSzJoFkdApm2MT101ZXV9lChoBmgJaA9DCC0ly0kovQnAlIaUUpRoFUsyaBZHQKZtLi2Dxsl1fZQoaAZoCWgPQwiPjquRXQkEwJSGlFKUaBVLMmgWR0Cmb1PBrN4adX2UKGgGaAloD0MI6iKFsvAlFMCUhpRSlGgVSzJoFkdApm7z2SMcZXV9lChoBmgJaA9DCCAIkKFjxwTAlIaUUpRoFUsyaBZHQKZulnVXmvJ1fZQoaAZoCWgPQwjuX1lpUsr9v5SGlFKUaBVLMmgWR0CmbjgOz6acdX2UKGgGaAloD0MIP+YDAp2JAsCUhpRSlGgVSzJoFkdApnBWnCO3lXV9lChoBmgJaA9DCDFhNCvb5wXAlIaUUpRoFUsyaBZHQKZv9pUPxx11fZQoaAZoCWgPQwgWaHdIMaABwJSGlFKUaBVLMmgWR0Cmb5luWKMvdX2UKGgGaAloD0MIRUYHJGFfDsCUhpRSlGgVSzJoFkdApm87bvgFYHV9lChoBmgJaA9DCKOQZFbvcA/AlIaUUpRoFUsyaBZHQKZxXnkDIR11fZQoaAZoCWgPQwjZ6Qd1kWINwJSGlFKUaBVLMmgWR0CmcP6GYa5xdX2UKGgGaAloD0MIc4QM5NmlCcCUhpRSlGgVSzJoFkdApnChXyRSxnV9lChoBmgJaA9DCJXzxd6LrwHAlIaUUpRoFUsyaBZHQKZwQzdDYyx1fZQoaAZoCWgPQwhjey3ovREKwJSGlFKUaBVLMmgWR0CmcmE1/DtPdX2UKGgGaAloD0MIFoTyPo7WEsCUhpRSlGgVSzJoFkdApnIBCIDYAnV9lChoBmgJaA9DCKWFyypspgHAlIaUUpRoFUsyaBZHQKZxo6hg3Lp1fZQoaAZoCWgPQwji578Hr00bwJSGlFKUaBVLMmgWR0CmcUWqT8pDdX2UKGgGaAloD0MI8Gq5MxPMBMCUhpRSlGgVSzJoFkdApnNYvHtF8XV9lChoBmgJaA9DCKVMamgDwBbAlIaUUpRoFUsyaBZHQKZy+M4LkS51fZQoaAZoCWgPQwhVhQZi2WwXwJSGlFKUaBVLMmgWR0CmcpuVopQUdX2UKGgGaAloD0MI0egOYmdqFMCUhpRSlGgVSzJoFkdApnI9RR/EwXV9lChoBmgJaA9DCDj5LTpZOhnAlIaUUpRoFUsyaBZHQKZ0W03wTdt1fZQoaAZoCWgPQwjs3R/vVUsEwJSGlFKUaBVLMmgWR0Cmc/sDwH7hdX2UKGgGaAloD0MIV3bB4JrLFsCUhpRSlGgVSzJoFkdApnOd7MPjGXV9lChoBmgJaA9DCFBUNqypLATAlIaUUpRoFUsyaBZHQKZzP6be/Hp1fZQoaAZoCWgPQwgHDJI+rQIPwJSGlFKUaBVLMmgWR0CmdVWJrLyMdX2UKGgGaAloD0MIJ4QOuoQjCsCUhpRSlGgVSzJoFkdApnT1f7aZhXV9lChoBmgJaA9DCKxVuyakFQbAlIaUUpRoFUsyaBZHQKZ0mEmICU51fZQoaAZoCWgPQwj84lKVtjgMwJSGlFKUaBVLMmgWR0CmdDpEYwZgdX2UKGgGaAloD0MIvqWcL/Y+A8CUhpRSlGgVSzJoFkdApnZFTzd1uHV9lChoBmgJaA9DCA8J3/sbBBLAlIaUUpRoFUsyaBZHQKZ15VDKHO91fZQoaAZoCWgPQwh0eXO4VtsBwJSGlFKUaBVLMmgWR0CmdYgwwj+rdX2UKGgGaAloD0MIXRWoxeChCMCUhpRSlGgVSzJoFkdApnUp8c+7lXV9lChoBmgJaA9DCOmY84x9ORHAlIaUUpRoFUsyaBZHQKZ3PxT850d1fZQoaAZoCWgPQwh2/1iIDiEHwJSGlFKUaBVLMmgWR0Cmdt8Yht+DdX2UKGgGaAloD0MImUhpNo+zEcCUhpRSlGgVSzJoFkdApnaBsl9jPXV9lChoBmgJaA9DCHy1ozhHPQnAlIaUUpRoFUsyaBZHQKZ2I3qAz551ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aab7d3021426008eb6126010752cd58f96cac73105ee730985218e37256d341e
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfba753aaf190893057cc81441ae32b24594f2d4ead7818af52f234ddb36d2d6
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9e17af3c70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9e17af8ac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682869577067730529, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhN3MPkS5pryw/xQ/hN3MPkS5pryw/xQ/hN3MPkS5pryw/xQ/hN3MPkS5pryw/xQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJOKEPoJYH7/AyHO/aD2AP09TIr9tCWe/DBsQv3L8Rr8mt6U/012eP9TRoD6gJVM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACE3cw+RLmmvLD/FD/J/GU8/lU0uuMVhjuE3cw+RLmmvLD/FD/J/GU8/lU0uuMVhjuE3cw+RLmmvLD/FD/J/GU8/lU0uuMVhjuE3cw+RLmmvLD/FD/J/GU8/lU0uuMVhjuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40012753 -0.02035201 0.5820265 ]\n [ 0.40012753 -0.02035201 0.5820265 ]\n [ 0.40012753 -0.02035201 0.5820265 ]\n [ 0.40012753 -0.02035201 0.5820265 ]]", "desired_goal": "[[ 0.25953782 -0.6224443 -0.95228195]\n [ 1.001874 -0.6340837 -0.9024876 ]\n [-0.5629127 -0.7772895 1.2946517 ]\n [ 1.2372383 0.31410086 0.82479286]]", "observation": "[[ 0.40012753 -0.02035201 0.5820265 0.01403732 -0.00068793 0.00409196]\n [ 0.40012753 -0.02035201 0.5820265 0.01403732 -0.00068793 0.00409196]\n [ 0.40012753 -0.02035201 0.5820265 0.01403732 -0.00068793 0.00409196]\n [ 0.40012753 -0.02035201 0.5820265 0.01403732 -0.00068793 0.00409196]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA17cKPonrFD04cdY8d/D6vIDQu73R2ZQ+3TNnPf+Aej3m02w+XVRwvZ2SJTwa2lM9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13546692 0.03635744 0.02617703]\n [-0.03063224 -0.09170628 0.2907243 ]\n [ 0.05644595 0.06115818 0.23127708]\n [-0.05867421 0.01010576 0.05172167]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfsfw2M9yEMCUhpRSlIwBbJRLMowBdJRHQKZZ7fG+9J11fZQoaAZoCWgPQwiBCdy6m8cYwJSGlFKUaBVLMmgWR0CmWY4KpkwwdX2UKGgGaAloD0MIxw2/m27ZAsCUhpRSlGgVSzJoFkdAplkw/keZHHV9lChoBmgJaA9DCH5v05/9KAXAlIaUUpRoFUsyaBZHQKZY0uM+/xl1fZQoaAZoCWgPQwi95erHJtkUwJSGlFKUaBVLMmgWR0CmWx71qWTpdX2UKGgGaAloD0MIn3JMFvcf9L+UhpRSlGgVSzJoFkdAplq+4EwFknV9lChoBmgJaA9DCAIrhxbZHhbAlIaUUpRoFUsyaBZHQKZaYoVmBe51fZQoaAZoCWgPQwh9PsqIC5ARwJSGlFKUaBVLMmgWR0CmWgSBkI5YdX2UKGgGaAloD0MIPdLgtrawAcCUhpRSlGgVSzJoFkdAplw+f7Jnx3V9lChoBmgJaA9DCBrAWyBBkQLAlIaUUpRoFUsyaBZHQKZb3qi48U51fZQoaAZoCWgPQwj8HYoCfaIEwJSGlFKUaBVLMmgWR0CmW4GozeoDdX2UKGgGaAloD0MIRgvQtprFEMCUhpRSlGgVSzJoFkdAplsjm0VrRHV9lChoBmgJaA9DCL/udOeJZwDAlIaUUpRoFUsyaBZHQKZdVRplBhR1fZQoaAZoCWgPQwiDiqpf6ZwMwJSGlFKUaBVLMmgWR0CmXPUahpQDdX2UKGgGaAloD0MIchjMXyGzC8CUhpRSlGgVSzJoFkdAplyX5xiobXV9lChoBmgJaA9DCDL/6Js0zQjAlIaUUpRoFUsyaBZHQKZcOeTV2A51fZQoaAZoCWgPQwgjoS3nUjwQwJSGlFKUaBVLMmgWR0CmXmWq94/vdX2UKGgGaAloD0MIrDlAMEcP7b+UhpRSlGgVSzJoFkdApl4Fm8M/hXV9lChoBmgJaA9DCJ6ayw2GevC/lIaUUpRoFUsyaBZHQKZdqGr0aqF1fZQoaAZoCWgPQwiDTDJyFjYOwJSGlFKUaBVLMmgWR0CmXUp2MbWFdX2UKGgGaAloD0MIgh3/BYLgEsCUhpRSlGgVSzJoFkdApl+fQY1pCnV9lChoBmgJaA9DCOrouBrZtQfAlIaUUpRoFUsyaBZHQKZfP1bqyGB1fZQoaAZoCWgPQwhlVu9wO/T4v5SGlFKUaBVLMmgWR0CmXuI3BHkMdX2UKGgGaAloD0MI0SSxpNxdAMCUhpRSlGgVSzJoFkdApl6EHpr1unV9lChoBmgJaA9DCBFUjV4N0AHAlIaUUpRoFUsyaBZHQKZgsW0qpcZ1fZQoaAZoCWgPQwg5e2e0VWkBwJSGlFKUaBVLMmgWR0CmYFF10T11dX2UKGgGaAloD0MIKAtfX+uSE8CUhpRSlGgVSzJoFkdApl/0XizcAXV9lChoBmgJaA9DCKGfqdctUhDAlIaUUpRoFUsyaBZHQKZfln6l+E11fZQoaAZoCWgPQwh3ZKw2/y8BwJSGlFKUaBVLMmgWR0CmYceRHPNWdX2UKGgGaAloD0MISDfCoiKuGMCUhpRSlGgVSzJoFkdApmFnh4t6HHV9lChoBmgJaA9DCLWIKCZvsBTAlIaUUpRoFUsyaBZHQKZhCofCAMF1fZQoaAZoCWgPQwggJ0wYzYr0v5SGlFKUaBVLMmgWR0CmYKx/NJOGdX2UKGgGaAloD0MIrprniHyX9L+UhpRSlGgVSzJoFkdApmL0BhhH9XV9lChoBmgJaA9DCODzwwjhEfG/lIaUUpRoFUsyaBZHQKZilChvitJ1fZQoaAZoCWgPQwjoEaPnFioTwJSGlFKUaBVLMmgWR0CmYjcmKIi1dX2UKGgGaAloD0MIn+bkRSag/r+UhpRSlGgVSzJoFkdApmHZQHiWFHV9lChoBmgJaA9DCJ4JTRJLagnAlIaUUpRoFUsyaBZHQKZkKXAuZkV1fZQoaAZoCWgPQwjerSzRWQYdwJSGlFKUaBVLMmgWR0CmY8oz3yqddX2UKGgGaAloD0MITkUqjC1kA8CUhpRSlGgVSzJoFkdApmNtG3F1jnV9lChoBmgJaA9DCDjXMEPjqRPAlIaUUpRoFUsyaBZHQKZjDwXqJMx1fZQoaAZoCWgPQwgtlExO7awAwJSGlFKUaBVLMmgWR0CmZcxkd3jddX2UKGgGaAloD0MIJQfsavLUDcCUhpRSlGgVSzJoFkdApmVtGPPszHV9lChoBmgJaA9DCII4DycwLRLAlIaUUpRoFUsyaBZHQKZlENhE0BR1fZQoaAZoCWgPQwjXw5eJIiQDwJSGlFKUaBVLMmgWR0CmZLNz8xbjdX2UKGgGaAloD0MIgSIWMexw8r+UhpRSlGgVSzJoFkdApmeHJ3gUDnV9lChoBmgJaA9DCOUMxR1v8g/AlIaUUpRoFUsyaBZHQKZnKE3bVSZ1fZQoaAZoCWgPQwiFzJVBtUEAwJSGlFKUaBVLMmgWR0CmZswfhddFdX2UKGgGaAloD0MIv9U6cTkOFsCUhpRSlGgVSzJoFkdApmZvFDOTq3V9lChoBmgJaA9DCEH1DyIZsgLAlIaUUpRoFUsyaBZHQKZpXSHdoFp1fZQoaAZoCWgPQwhZbJOKxvoBwJSGlFKUaBVLMmgWR0CmaP4xcmjTdX2UKGgGaAloD0MIqdvZVx4EEsCUhpRSlGgVSzJoFkdApmih9E1EVnV9lChoBmgJaA9DCGE3bFuUeRPAlIaUUpRoFUsyaBZHQKZoRS5y2hJ1fZQoaAZoCWgPQwjGNNO9Tir9v5SGlFKUaBVLMmgWR0Cmay50r9VFdX2UKGgGaAloD0MIPKWD9X+O/b+UhpRSlGgVSzJoFkdApmrPYe1a4nV9lChoBmgJaA9DCJFkVu9we/m/lIaUUpRoFUsyaBZHQKZqc0ALiMp1fZQoaAZoCWgPQwgN38K68R4QwJSGlFKUaBVLMmgWR0CmahZc9nscdX2UKGgGaAloD0MI2o6pu7KbEsCUhpRSlGgVSzJoFkdApm0eNrCWNXV9lChoBmgJaA9DCC+i7Zi66xLAlIaUUpRoFUsyaBZHQKZsvy8zyjJ1fZQoaAZoCWgPQwg/V1uxv4wJwJSGlFKUaBVLMmgWR0CmbGMOXmeUdX2UKGgGaAloD0MIA3rhzoUxCcCUhpRSlGgVSzJoFkdApmwF9ORDC3V9lChoBmgJaA9DCHalZaTe8wrAlIaUUpRoFUsyaBZHQKZuSTKT0QN1fZQoaAZoCWgPQwiO5sjKL4P7v5SGlFKUaBVLMmgWR0CmbelGoaUBdX2UKGgGaAloD0MISino9pLmDMCUhpRSlGgVSzJoFkdApm2MT101ZXV9lChoBmgJaA9DCC0ly0kovQnAlIaUUpRoFUsyaBZHQKZtLi2Dxsl1fZQoaAZoCWgPQwiPjquRXQkEwJSGlFKUaBVLMmgWR0Cmb1PBrN4adX2UKGgGaAloD0MI6iKFsvAlFMCUhpRSlGgVSzJoFkdApm7z2SMcZXV9lChoBmgJaA9DCCAIkKFjxwTAlIaUUpRoFUsyaBZHQKZulnVXmvJ1fZQoaAZoCWgPQwjuX1lpUsr9v5SGlFKUaBVLMmgWR0CmbjgOz6acdX2UKGgGaAloD0MIP+YDAp2JAsCUhpRSlGgVSzJoFkdApnBWnCO3lXV9lChoBmgJaA9DCDFhNCvb5wXAlIaUUpRoFUsyaBZHQKZv9pUPxx11fZQoaAZoCWgPQwgWaHdIMaABwJSGlFKUaBVLMmgWR0Cmb5luWKMvdX2UKGgGaAloD0MIRUYHJGFfDsCUhpRSlGgVSzJoFkdApm87bvgFYHV9lChoBmgJaA9DCKOQZFbvcA/AlIaUUpRoFUsyaBZHQKZxXnkDIR11fZQoaAZoCWgPQwjZ6Qd1kWINwJSGlFKUaBVLMmgWR0CmcP6GYa5xdX2UKGgGaAloD0MIc4QM5NmlCcCUhpRSlGgVSzJoFkdApnChXyRSxnV9lChoBmgJaA9DCJXzxd6LrwHAlIaUUpRoFUsyaBZHQKZwQzdDYyx1fZQoaAZoCWgPQwhjey3ovREKwJSGlFKUaBVLMmgWR0CmcmE1/DtPdX2UKGgGaAloD0MIFoTyPo7WEsCUhpRSlGgVSzJoFkdApnIBCIDYAnV9lChoBmgJaA9DCKWFyypspgHAlIaUUpRoFUsyaBZHQKZxo6hg3Lp1fZQoaAZoCWgPQwji578Hr00bwJSGlFKUaBVLMmgWR0CmcUWqT8pDdX2UKGgGaAloD0MI8Gq5MxPMBMCUhpRSlGgVSzJoFkdApnNYvHtF8XV9lChoBmgJaA9DCKVMamgDwBbAlIaUUpRoFUsyaBZHQKZy+M4LkS51fZQoaAZoCWgPQwhVhQZi2WwXwJSGlFKUaBVLMmgWR0CmcpuVopQUdX2UKGgGaAloD0MI0egOYmdqFMCUhpRSlGgVSzJoFkdApnI9RR/EwXV9lChoBmgJaA9DCDj5LTpZOhnAlIaUUpRoFUsyaBZHQKZ0W03wTdt1fZQoaAZoCWgPQwjs3R/vVUsEwJSGlFKUaBVLMmgWR0Cmc/sDwH7hdX2UKGgGaAloD0MIV3bB4JrLFsCUhpRSlGgVSzJoFkdApnOd7MPjGXV9lChoBmgJaA9DCFBUNqypLATAlIaUUpRoFUsyaBZHQKZzP6be/Hp1fZQoaAZoCWgPQwgHDJI+rQIPwJSGlFKUaBVLMmgWR0CmdVWJrLyMdX2UKGgGaAloD0MIJ4QOuoQjCsCUhpRSlGgVSzJoFkdApnT1f7aZhXV9lChoBmgJaA9DCKxVuyakFQbAlIaUUpRoFUsyaBZHQKZ0mEmICU51fZQoaAZoCWgPQwj84lKVtjgMwJSGlFKUaBVLMmgWR0CmdDpEYwZgdX2UKGgGaAloD0MIvqWcL/Y+A8CUhpRSlGgVSzJoFkdApnZFTzd1uHV9lChoBmgJaA9DCA8J3/sbBBLAlIaUUpRoFUsyaBZHQKZ15VDKHO91fZQoaAZoCWgPQwh0eXO4VtsBwJSGlFKUaBVLMmgWR0CmdYgwwj+rdX2UKGgGaAloD0MIXRWoxeChCMCUhpRSlGgVSzJoFkdApnUp8c+7lXV9lChoBmgJaA9DCOmY84x9ORHAlIaUUpRoFUsyaBZHQKZ3PxT850d1fZQoaAZoCWgPQwh2/1iIDiEHwJSGlFKUaBVLMmgWR0Cmdt8Yht+DdX2UKGgGaAloD0MImUhpNo+zEcCUhpRSlGgVSzJoFkdApnaBsl9jPXV9lChoBmgJaA9DCHy1ozhHPQnAlIaUUpRoFUsyaBZHQKZ2I3qAz551ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (754 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.7605757218785585, "std_reward": 1.3214405886227536, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-30T17:11:56.020568"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d0d97322522f2418c5bf64e67236e4c2f5a2dbfb558a10733c6555a775d3a6f
3
+ size 2387