File size: 2,998 Bytes
9c50180
 
e5fe9dc
9c50180
e5fe9dc
 
 
 
 
 
 
 
9c50180
 
e5fe9dc
9c50180
e5fe9dc
9c50180
 
e5fe9dc
9c50180
e5fe9dc
9c50180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5fe9dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-3-medium-diffusers
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- simpletuner
- lora
- template:sd-lora
- not-for-all-audiences
inference: true
widget:
- text: unconditional (blank prompt)
  parameters:
    negative_prompt: blurry, cropped, ugly
  output:
    url: ./assets/image_0_0.png
- text: a photo of a naked woman with large breasts
  parameters:
    negative_prompt: blurry, cropped, ugly
  output:
    url: ./assets/image_1_0.png
---

# sdxl-training

This is a LoRA derived from [stabilityai/stable-diffusion-3-medium-diffusers](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers).



The main validation prompt used during training was:

```
a photo of a naked woman with large breasts
```

## Validation settings
- CFG: `7.5`
- CFG Rescale: `0.0`
- Steps: `50`
- Sampler: `euler`
- Seed: `42`
- Resolution: `1024`

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).

You can find some example images in the following gallery:


<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 1072
- Training steps: 21450
- Learning rate: 0.0002
- Effective batch size: 20
  - Micro-batch size: 5
  - Gradient accumulation steps: 4
  - Number of GPUs: 1
- Prediction type: epsilon
- Rescaled betas zero SNR: False
- Optimizer: AdamW, stochastic bf16
- Precision: Pure BF16
- Xformers: Enabled
- LoRA Rank: 64
- LoRA Alpha: 64.0
- LoRA Dropout: 0.1
- LoRA initialisation style: default


## Datasets

### curated3
- Repeats: 0
- Total number of images: 400
- Total number of aspect buckets: 1
- Resolution: 0.5 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None


## Inference


```python
import torch
from diffusers import DiffusionPipeline




model_id = 'stabilityai/stable-diffusion-3-medium-diffusers'
adapter_id = 'sdxl-training'
prompt = 'a photo of a naked woman with large breasts'
negative_prompt = 'blurry, cropped, ugly'
pipeline = DiffusionPipeline.from_pretrained(model_id)\pipeline.load_adapter(adapter_id)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')

prompt = "a photo of a naked woman with large breasts"
negative_prompt = "blurry, cropped, ugly"

pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt='blurry, cropped, ugly',
    num_inference_steps=50,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1152,
    height=768,
    guidance_scale=7.5,
    guidance_rescale=0.0,
).images[0]
image.save("output.png", format="PNG")
```