wpp02 commited on
Commit
284f08e
1 Parent(s): 108919d

Upload model

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +21 -0
  3. configuration_mlp.py +26 -0
  4. model.safetensors +3 -0
  5. modeling_mlp.py +51 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MLPModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_mlp.MLPConfig",
7
+ "AutoModel": "modeling_mlp.MLPModel"
8
+ },
9
+ "hidden_act": "relu",
10
+ "hidden_size": [
11
+ 256,
12
+ 256
13
+ ],
14
+ "initializer_range": 0.02,
15
+ "input_size": 64,
16
+ "model_type": "mlp",
17
+ "num_hidden_layers": 2,
18
+ "output_size": 2,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.44.2"
21
+ }
configuration_mlp.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class MLPConfig(PretrainedConfig):
5
+ model_type = "mlp"
6
+
7
+ def __init__(
8
+ self,
9
+ num_hidden_layers: int = 2,
10
+ input_size: int = 64,
11
+ hidden_size: list[int] = [256, 256],
12
+ output_size: int = 2,
13
+ hidden_act: str = "relu",
14
+ initializer_range: float = 0.02,
15
+ **kwargs
16
+ ):
17
+ if len(hidden_size) != num_hidden_layers:
18
+ raise ValueError("num_hidden_layers should equal to len(hidden_size)")
19
+
20
+ self.num_hidden_layers = num_hidden_layers
21
+ self.input_size = input_size
22
+ self.hidden_size = hidden_size
23
+ self.output_size = output_size
24
+ self.hidden_act = hidden_act
25
+ self.initializer_range = initializer_range
26
+ super().__init__(**kwargs)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d8e72a0782bf6286404c5e4f88811239c4188bdae687ac45c549b99123db29c
3
+ size 332296
modeling_mlp.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from typing import Optional
4
+ from dataclasses import dataclass
5
+ from transformers import PreTrainedModel
6
+ from .configuration_mlp import MLPConfig
7
+ from transformers.utils import ModelOutput
8
+ from transformers.activations import ACT2FN
9
+
10
+
11
+ @dataclass
12
+ class MLPOutput(ModelOutput):
13
+ loss: Optional[torch.FloatTensor] = None
14
+ logits: Optional[torch.FloatTensor] = None
15
+
16
+
17
+ class MLPPreTrainedModel(PreTrainedModel):
18
+ config_class = MLPConfig
19
+
20
+ def _init_weights(self, module):
21
+ """Initialize the weights"""
22
+ if isinstance(module, nn.Linear):
23
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
24
+ if module.bias is not None:
25
+ module.bias.data.zero_()
26
+
27
+
28
+ class MLPModel(MLPPreTrainedModel):
29
+ def __init__(self, config):
30
+ super().__init__(config)
31
+ self.act_fn = ACT2FN[config.hidden_act]
32
+ iho = [config.input_size, *config.hidden_size, config.output_size]
33
+ self.linears = nn.ModuleList([
34
+ nn.Linear(iho[i], iho[i+1])
35
+ for i in range(config.num_hidden_layers + 1)
36
+ ])
37
+ self.loss_fn = nn.CrossEntropyLoss(reduce="mean")
38
+ # Initialize weights and apply final processing
39
+ self.post_init()
40
+
41
+ def forward(self, inputs, labels=None):
42
+ for i in range(len(self.linears) - 1):
43
+ inputs = self.act_fn(self.linears[i](inputs))
44
+ logits = self.linears[-1](inputs)
45
+
46
+ loss = None
47
+ if labels is None:
48
+ return ModelOutput(loss=loss, logits=logits)
49
+ else:
50
+ loss = self.loss_fn(logits, labels)
51
+ return ModelOutput(loss=loss, logits=logits)