from transformers import PretrainedConfig class MLPConfig(PretrainedConfig): model_type = "mlp" def __init__( self, num_hidden_layers: int = 2, input_size: int = 64, hidden_size: list[int] = [256, 256], output_size: int = 2, hidden_act: str = "relu", initializer_range: float = 0.02, **kwargs ): if len(hidden_size) != num_hidden_layers: raise ValueError("num_hidden_layers should equal to len(hidden_size)") self.num_hidden_layers = num_hidden_layers self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.hidden_act = hidden_act self.initializer_range = initializer_range super().__init__(**kwargs)