0125deepseek
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/args.json +371 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/README.md +202 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/adapter_config.json +37 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/adapter_model.safetensors +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/additional_config.json +1 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/args.json +371 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/global_step102/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/global_step102/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/global_step102/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/global_step102/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/latest +1 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/rng_state_0.pth +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/rng_state_1.pth +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/scheduler.pt +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/trainer_state.json +496 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/training_args.bin +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/zero_to_fp32.py +760 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/README.md +202 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/adapter_config.json +37 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/adapter_model.safetensors +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/additional_config.json +1 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/args.json +371 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/global_step122/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/global_step122/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/global_step122/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/global_step122/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/latest +1 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/rng_state_0.pth +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/rng_state_1.pth +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/scheduler.pt +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/trainer_state.json +585 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/training_args.bin +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/zero_to_fp32.py +760 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/README.md +202 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/adapter_config.json +37 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/adapter_model.safetensors +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/additional_config.json +1 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/args.json +371 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/global_step20/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/global_step20/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/global_step20/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/global_step20/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/latest +1 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/rng_state_0.pth +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/rng_state_1.pth +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/scheduler.pt +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/trainer_state.json +140 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/training_args.bin +3 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/zero_to_fp32.py +760 -0
- output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-40/README.md +202 -0
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/args.json
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "/home/wangruotong/LLM_test/Models/deepseek-r1-1.5b",
|
3 |
+
"model_type": "deepseek_r1_distill",
|
4 |
+
"model_revision": null,
|
5 |
+
"task_type": "causal_lm",
|
6 |
+
"torch_dtype": "bfloat16",
|
7 |
+
"attn_impl": null,
|
8 |
+
"num_labels": null,
|
9 |
+
"rope_scaling": null,
|
10 |
+
"device_map": null,
|
11 |
+
"local_repo_path": null,
|
12 |
+
"template": "deepseek_r1",
|
13 |
+
"system": null,
|
14 |
+
"max_length": 8192,
|
15 |
+
"truncation_strategy": "delete",
|
16 |
+
"max_pixels": null,
|
17 |
+
"tools_prompt": "react_en",
|
18 |
+
"padding_side": "right",
|
19 |
+
"loss_scale": "last_round",
|
20 |
+
"sequence_parallel_size": 1,
|
21 |
+
"use_chat_template": true,
|
22 |
+
"template_backend": "swift",
|
23 |
+
"dataset": [
|
24 |
+
"/home/wangruotong/LLM_test/data/train_400_dpo_0.5_random20.jsonl"
|
25 |
+
],
|
26 |
+
"val_dataset": [],
|
27 |
+
"split_dataset_ratio": 0.01,
|
28 |
+
"data_seed": 42,
|
29 |
+
"dataset_num_proc": 4,
|
30 |
+
"streaming": false,
|
31 |
+
"enable_cache": false,
|
32 |
+
"download_mode": "reuse_dataset_if_exists",
|
33 |
+
"strict": false,
|
34 |
+
"model_name": [
|
35 |
+
null,
|
36 |
+
null
|
37 |
+
],
|
38 |
+
"model_author": [
|
39 |
+
null,
|
40 |
+
null
|
41 |
+
],
|
42 |
+
"custom_dataset_info": [],
|
43 |
+
"quant_method": null,
|
44 |
+
"quant_bits": null,
|
45 |
+
"hqq_axis": null,
|
46 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
47 |
+
"bnb_4bit_quant_type": "nf4",
|
48 |
+
"bnb_4bit_use_double_quant": true,
|
49 |
+
"bnb_4bit_quant_storage": null,
|
50 |
+
"max_new_tokens": 64,
|
51 |
+
"temperature": 0.7,
|
52 |
+
"top_k": null,
|
53 |
+
"top_p": null,
|
54 |
+
"repetition_penalty": null,
|
55 |
+
"num_beams": 1,
|
56 |
+
"stream": false,
|
57 |
+
"stop_words": [],
|
58 |
+
"logprobs": false,
|
59 |
+
"top_logprobs": null,
|
60 |
+
"ckpt_dir": null,
|
61 |
+
"load_dataset_config": null,
|
62 |
+
"lora_modules": [],
|
63 |
+
"tuner_backend": "peft",
|
64 |
+
"train_type": "lora",
|
65 |
+
"adapters": [],
|
66 |
+
"seed": 42,
|
67 |
+
"model_kwargs": {},
|
68 |
+
"load_args": true,
|
69 |
+
"load_data_args": false,
|
70 |
+
"use_hf": false,
|
71 |
+
"hub_token": null,
|
72 |
+
"custom_register_path": [],
|
73 |
+
"ignore_args_error": false,
|
74 |
+
"use_swift_lora": false,
|
75 |
+
"output_dir": "/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757",
|
76 |
+
"overwrite_output_dir": false,
|
77 |
+
"do_train": false,
|
78 |
+
"do_eval": false,
|
79 |
+
"do_predict": false,
|
80 |
+
"eval_strategy": "steps",
|
81 |
+
"prediction_loss_only": false,
|
82 |
+
"per_device_train_batch_size": 1,
|
83 |
+
"per_device_eval_batch_size": 1,
|
84 |
+
"per_gpu_train_batch_size": null,
|
85 |
+
"per_gpu_eval_batch_size": null,
|
86 |
+
"gradient_accumulation_steps": 8,
|
87 |
+
"eval_accumulation_steps": null,
|
88 |
+
"eval_delay": 0,
|
89 |
+
"torch_empty_cache_steps": null,
|
90 |
+
"learning_rate": 0.0001,
|
91 |
+
"weight_decay": 0.1,
|
92 |
+
"adam_beta1": 0.9,
|
93 |
+
"adam_beta2": 0.999,
|
94 |
+
"adam_epsilon": 1e-08,
|
95 |
+
"max_grad_norm": 1.0,
|
96 |
+
"num_train_epochs": 5.0,
|
97 |
+
"max_steps": -1,
|
98 |
+
"lr_scheduler_type": "cosine",
|
99 |
+
"lr_scheduler_kwargs": null,
|
100 |
+
"warmup_ratio": 0.05,
|
101 |
+
"warmup_steps": 0,
|
102 |
+
"log_level": "passive",
|
103 |
+
"log_level_replica": "warning",
|
104 |
+
"log_on_each_node": true,
|
105 |
+
"logging_dir": "/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/runs",
|
106 |
+
"logging_strategy": "steps",
|
107 |
+
"logging_first_step": true,
|
108 |
+
"logging_steps": 5,
|
109 |
+
"logging_nan_inf_filter": true,
|
110 |
+
"save_strategy": "steps",
|
111 |
+
"save_steps": 20.0,
|
112 |
+
"save_total_limit": 100,
|
113 |
+
"save_safetensors": true,
|
114 |
+
"save_on_each_node": false,
|
115 |
+
"save_only_model": false,
|
116 |
+
"restore_callback_states_from_checkpoint": false,
|
117 |
+
"no_cuda": false,
|
118 |
+
"use_cpu": false,
|
119 |
+
"use_mps_device": false,
|
120 |
+
"jit_mode_eval": false,
|
121 |
+
"use_ipex": false,
|
122 |
+
"bf16": true,
|
123 |
+
"fp16": false,
|
124 |
+
"fp16_opt_level": "O1",
|
125 |
+
"half_precision_backend": "auto",
|
126 |
+
"bf16_full_eval": false,
|
127 |
+
"fp16_full_eval": false,
|
128 |
+
"tf32": null,
|
129 |
+
"local_rank": 0,
|
130 |
+
"ddp_backend": null,
|
131 |
+
"tpu_num_cores": null,
|
132 |
+
"tpu_metrics_debug": false,
|
133 |
+
"debug": null,
|
134 |
+
"dataloader_drop_last": false,
|
135 |
+
"eval_steps": 20.0,
|
136 |
+
"dataloader_num_workers": 4,
|
137 |
+
"dataloader_prefetch_factor": null,
|
138 |
+
"past_index": -1,
|
139 |
+
"run_name": null,
|
140 |
+
"disable_tqdm": null,
|
141 |
+
"remove_unused_columns": false,
|
142 |
+
"label_names": null,
|
143 |
+
"load_best_model_at_end": false,
|
144 |
+
"metric_for_best_model": "loss",
|
145 |
+
"greater_is_better": false,
|
146 |
+
"ignore_data_skip": false,
|
147 |
+
"fsdp": "",
|
148 |
+
"fsdp_min_num_params": 0,
|
149 |
+
"fsdp_config": null,
|
150 |
+
"fsdp_transformer_layer_cls_to_wrap": null,
|
151 |
+
"accelerator_config": {
|
152 |
+
"dispatch_batches": false
|
153 |
+
},
|
154 |
+
"deepspeed": {
|
155 |
+
"fp16": {
|
156 |
+
"enabled": "auto",
|
157 |
+
"loss_scale": 0,
|
158 |
+
"loss_scale_window": 1000,
|
159 |
+
"initial_scale_power": 16,
|
160 |
+
"hysteresis": 2,
|
161 |
+
"min_loss_scale": 1
|
162 |
+
},
|
163 |
+
"bf16": {
|
164 |
+
"enabled": "auto"
|
165 |
+
},
|
166 |
+
"zero_optimization": {
|
167 |
+
"stage": 3,
|
168 |
+
"offload_optimizer": {
|
169 |
+
"device": "none",
|
170 |
+
"pin_memory": true
|
171 |
+
},
|
172 |
+
"offload_param": {
|
173 |
+
"device": "none",
|
174 |
+
"pin_memory": true
|
175 |
+
},
|
176 |
+
"overlap_comm": true,
|
177 |
+
"contiguous_gradients": true,
|
178 |
+
"sub_group_size": 1000000000.0,
|
179 |
+
"reduce_bucket_size": "auto",
|
180 |
+
"stage3_prefetch_bucket_size": "auto",
|
181 |
+
"stage3_param_persistence_threshold": "auto",
|
182 |
+
"stage3_max_live_parameters": 1000000000.0,
|
183 |
+
"stage3_max_reuse_distance": 1000000000.0,
|
184 |
+
"stage3_gather_16bit_weights_on_model_save": true
|
185 |
+
},
|
186 |
+
"gradient_accumulation_steps": "auto",
|
187 |
+
"gradient_clipping": "auto",
|
188 |
+
"steps_per_print": 2000,
|
189 |
+
"train_batch_size": "auto",
|
190 |
+
"train_micro_batch_size_per_gpu": "auto",
|
191 |
+
"wall_clock_breakdown": false
|
192 |
+
},
|
193 |
+
"label_smoothing_factor": 0.0,
|
194 |
+
"optim": "adamw_torch",
|
195 |
+
"optim_args": null,
|
196 |
+
"adafactor": false,
|
197 |
+
"group_by_length": false,
|
198 |
+
"length_column_name": "length",
|
199 |
+
"report_to": [
|
200 |
+
"tensorboard"
|
201 |
+
],
|
202 |
+
"ddp_find_unused_parameters": null,
|
203 |
+
"ddp_bucket_cap_mb": null,
|
204 |
+
"ddp_broadcast_buffers": null,
|
205 |
+
"dataloader_pin_memory": true,
|
206 |
+
"dataloader_persistent_workers": false,
|
207 |
+
"skip_memory_metrics": true,
|
208 |
+
"use_legacy_prediction_loop": false,
|
209 |
+
"push_to_hub": false,
|
210 |
+
"resume_from_checkpoint": null,
|
211 |
+
"hub_model_id": null,
|
212 |
+
"hub_strategy": "every_save",
|
213 |
+
"hub_private_repo": null,
|
214 |
+
"hub_always_push": false,
|
215 |
+
"gradient_checkpointing": true,
|
216 |
+
"gradient_checkpointing_kwargs": null,
|
217 |
+
"include_inputs_for_metrics": false,
|
218 |
+
"include_for_metrics": [],
|
219 |
+
"eval_do_concat_batches": true,
|
220 |
+
"fp16_backend": "auto",
|
221 |
+
"evaluation_strategy": "steps",
|
222 |
+
"push_to_hub_model_id": null,
|
223 |
+
"push_to_hub_organization": null,
|
224 |
+
"push_to_hub_token": null,
|
225 |
+
"mp_parameters": "",
|
226 |
+
"auto_find_batch_size": false,
|
227 |
+
"full_determinism": false,
|
228 |
+
"torchdynamo": null,
|
229 |
+
"ray_scope": "last",
|
230 |
+
"ddp_timeout": 1800,
|
231 |
+
"torch_compile": false,
|
232 |
+
"torch_compile_backend": null,
|
233 |
+
"torch_compile_mode": null,
|
234 |
+
"dispatch_batches": null,
|
235 |
+
"split_batches": null,
|
236 |
+
"include_tokens_per_second": false,
|
237 |
+
"include_num_input_tokens_seen": false,
|
238 |
+
"neftune_noise_alpha": null,
|
239 |
+
"optim_target_modules": null,
|
240 |
+
"batch_eval_metrics": false,
|
241 |
+
"eval_on_start": false,
|
242 |
+
"use_liger_kernel": false,
|
243 |
+
"eval_use_gather_object": false,
|
244 |
+
"average_tokens_across_devices": false,
|
245 |
+
"sortish_sampler": false,
|
246 |
+
"predict_with_generate": false,
|
247 |
+
"generation_max_length": null,
|
248 |
+
"generation_num_beams": null,
|
249 |
+
"generation_config": null,
|
250 |
+
"freeze_parameters": [],
|
251 |
+
"freeze_parameters_ratio": 0.0,
|
252 |
+
"trainable_parameters": [],
|
253 |
+
"freeze_llm": false,
|
254 |
+
"freeze_vit": true,
|
255 |
+
"freeze_aligner": true,
|
256 |
+
"target_modules": [
|
257 |
+
"all-linear"
|
258 |
+
],
|
259 |
+
"target_regex": null,
|
260 |
+
"modules_to_save": [],
|
261 |
+
"lora_rank": 8,
|
262 |
+
"lora_alpha": 32,
|
263 |
+
"lora_dropout": 0.05,
|
264 |
+
"lora_bias": "none",
|
265 |
+
"lora_dtype": null,
|
266 |
+
"lorap_lr_ratio": null,
|
267 |
+
"use_rslora": false,
|
268 |
+
"use_dora": false,
|
269 |
+
"lora_ga_batch_size": 2,
|
270 |
+
"lora_ga_iters": 2,
|
271 |
+
"lora_ga_max_length": 1024,
|
272 |
+
"lora_ga_direction": "ArB2r",
|
273 |
+
"lora_ga_scale": "stable",
|
274 |
+
"lora_ga_stable_gamma": 16,
|
275 |
+
"init_weights": true,
|
276 |
+
"fourier_n_frequency": 2000,
|
277 |
+
"fourier_scaling": 300.0,
|
278 |
+
"boft_block_size": 4,
|
279 |
+
"boft_block_num": 0,
|
280 |
+
"boft_n_butterfly_factor": 1,
|
281 |
+
"boft_dropout": 0.0,
|
282 |
+
"vera_rank": 256,
|
283 |
+
"vera_projection_prng_key": 0,
|
284 |
+
"vera_dropout": 0.0,
|
285 |
+
"vera_d_initial": 0.1,
|
286 |
+
"adapter_act": "gelu",
|
287 |
+
"adapter_length": 128,
|
288 |
+
"use_galore": false,
|
289 |
+
"galore_target_modules": null,
|
290 |
+
"galore_rank": 128,
|
291 |
+
"galore_update_proj_gap": 50,
|
292 |
+
"galore_scale": 1.0,
|
293 |
+
"galore_proj_type": "std",
|
294 |
+
"galore_optim_per_parameter": false,
|
295 |
+
"galore_with_embedding": false,
|
296 |
+
"galore_quantization": false,
|
297 |
+
"galore_proj_quant": false,
|
298 |
+
"galore_proj_bits": 4,
|
299 |
+
"galore_proj_group_size": 256,
|
300 |
+
"galore_cos_threshold": 0.4,
|
301 |
+
"galore_gamma_proj": 2,
|
302 |
+
"galore_queue_size": 5,
|
303 |
+
"adalora_target_r": 8,
|
304 |
+
"adalora_init_r": 12,
|
305 |
+
"adalora_tinit": 0,
|
306 |
+
"adalora_tfinal": 0,
|
307 |
+
"adalora_deltaT": 1,
|
308 |
+
"adalora_beta1": 0.85,
|
309 |
+
"adalora_beta2": 0.85,
|
310 |
+
"adalora_orth_reg_weight": 0.5,
|
311 |
+
"llamapro_num_new_blocks": 4,
|
312 |
+
"llamapro_num_groups": null,
|
313 |
+
"lisa_activated_layers": 0,
|
314 |
+
"lisa_step_interval": 20,
|
315 |
+
"reft_layer_key": null,
|
316 |
+
"reft_layers": null,
|
317 |
+
"reft_rank": 4,
|
318 |
+
"reft_intervention_type": "LoreftIntervention",
|
319 |
+
"reft_args": null,
|
320 |
+
"use_liger": false,
|
321 |
+
"model_layer_cls_name": null,
|
322 |
+
"metric_warmup_step": 0,
|
323 |
+
"fsdp_num": 1,
|
324 |
+
"acc_steps": 1,
|
325 |
+
"add_version": true,
|
326 |
+
"resume_only_model": false,
|
327 |
+
"check_model": true,
|
328 |
+
"packing": false,
|
329 |
+
"lazy_tokenize": false,
|
330 |
+
"loss_type": "sigmoid",
|
331 |
+
"optimizer": null,
|
332 |
+
"metric": null,
|
333 |
+
"acc_strategy": "token",
|
334 |
+
"reward_model": null,
|
335 |
+
"reward_adapters": [],
|
336 |
+
"reward_model_type": null,
|
337 |
+
"reward_model_revision": null,
|
338 |
+
"num_ppo_epochs": 4,
|
339 |
+
"whiten_rewards": false,
|
340 |
+
"kl_coef": 0.05,
|
341 |
+
"cliprange": 0.2,
|
342 |
+
"vf_coef": 0.1,
|
343 |
+
"cliprange_value": 0.2,
|
344 |
+
"gamma": 1.0,
|
345 |
+
"lam": 0.95,
|
346 |
+
"num_mini_batches": 1,
|
347 |
+
"local_rollout_forward_batch_size": 64,
|
348 |
+
"num_sample_generations": 10,
|
349 |
+
"response_length": 512,
|
350 |
+
"missing_eos_penalty": null,
|
351 |
+
"rlhf_type": "dpo",
|
352 |
+
"ref_model": null,
|
353 |
+
"ref_model_type": null,
|
354 |
+
"ref_model_revision": null,
|
355 |
+
"beta": 0.1,
|
356 |
+
"label_smoothing": 0,
|
357 |
+
"rpo_alpha": 1.0,
|
358 |
+
"cpo_alpha": 1.0,
|
359 |
+
"simpo_gamma": 1,
|
360 |
+
"desirable_weight": 1.0,
|
361 |
+
"undesirable_weight": 1.0,
|
362 |
+
"rank": 0,
|
363 |
+
"global_world_size": 2,
|
364 |
+
"local_world_size": 2,
|
365 |
+
"model_suffix": "deepseek-r1-1.5b",
|
366 |
+
"model_info": "ModelInfo(model_type='deepseek_r1_distill', model_dir='/home/wangruotong/LLM_test/Models/deepseek-r1-1.5b', torch_dtype=torch.bfloat16, max_model_len=131072, quant_method=None, quant_bits=None, config=None, task_type='causal_lm', num_labels=None)",
|
367 |
+
"model_meta": "ModelMeta(model_type='deepseek_r1_distill', model_groups=[ModelGroup(models=[Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-7B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-7B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-14B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-14B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-32B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-32B', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=['transformers>=4.37'], tags=[]), ModelGroup(models=[Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-8B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-8B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-70B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-70B', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='deepseek_r1', get_function=<function get_model_tokenizer_with_flash_attn at 0x7f8a0540c940>, model_arch='llama', architectures=['Qwen2ForCausalLM', 'LlamaForCausalLM'], additional_saved_files=[], torch_dtype=None, is_multimodal=False, is_reward=False, task_type=None, ignore_patterns=[], requires=[], tags=[])",
|
368 |
+
"model_dir": "/home/wangruotong/LLM_test/Models/deepseek-r1-1.5b",
|
369 |
+
"hub": "<class 'swift.hub.hub.MSHub'>",
|
370 |
+
"training_args": "DPOConfig(output_dir='/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=8, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=0.0001, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=5.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=20, save_total_limit=100, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=20, dataloader_num_workers=4, dataloader_prefetch_factor=None, past_index=-1, run_name='/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 3, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'offload_param': {'device': 'none', 'pin_memory': True}, 'overlap_comm': True, 'contiguous_gradients': True, 'sub_group_size': 1000000000.0, 'reduce_bucket_size': 'auto', 'stage3_prefetch_bucket_size': 'auto', 'stage3_param_persistence_threshold': 'auto', 'stage3_max_live_parameters': 1000000000.0, 'stage3_max_reuse_distance': 1000000000.0, 'stage3_gather_16bit_weights_on_model_save': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', evaluation_strategy='steps', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, dispatch_batches=None, split_batches=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=False, eval_use_gather_object=False, average_tokens_across_devices=None, beta=0.1, label_smoothing=0, loss_type='sigmoid', label_pad_token_id=None, padding_value=None, truncation_mode='keep_end', max_length=8192, max_prompt_length=None, max_target_length=None, max_completion_length=None, is_encoder_decoder=False, disable_dropout=True, generate_during_eval=False, precompute_ref_log_probs=False, dataset_num_proc=4, model_init_kwargs=None, ref_model_init_kwargs=None, model_adapter_name=None, ref_adapter_name=None, reference_free=False, force_use_ref_model=False, f_divergence_type=<FDivergenceType.REVERSE_KL: 'reverse_kl'>, f_alpha_divergence_coef=1.0, sync_ref_model=False, ref_model_mixup_alpha=0.9, ref_model_sync_steps=64, rpo_alpha=1.0, acc_strategy='token', sequence_parallel_size=1, check_model=True, train_sampler_random=True, metric_warmup_step=0, train_dataset_sample=-1, fsdp_num=1, acc_steps=1, train_type='lora', optimizer=None, galore_config=None)"
|
371 |
+
}
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /home/wangruotong/LLM_test/Models/deepseek-r1-1.5b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/adapter_config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/home/wangruotong/LLM_test/Models/deepseek-r1-1.5b",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 32,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.05,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": [],
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 8,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"q_proj",
|
27 |
+
"o_proj",
|
28 |
+
"up_proj",
|
29 |
+
"k_proj",
|
30 |
+
"down_proj",
|
31 |
+
"gate_proj",
|
32 |
+
"v_proj"
|
33 |
+
],
|
34 |
+
"task_type": "CAUSAL_LM",
|
35 |
+
"use_dora": false,
|
36 |
+
"use_rslora": false
|
37 |
+
}
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:caeb9ecd37ea8841ff58123ea81404889057d49b56520a37fa5c34926630f7be
|
3 |
+
size 18516456
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/additional_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"lora_dtype": null, "lorap_lr_ratio": null, "lorap_emb_lr": 1e-06}
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/args.json
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "/home/wangruotong/LLM_test/Models/deepseek-r1-1.5b",
|
3 |
+
"model_type": "deepseek_r1_distill",
|
4 |
+
"model_revision": null,
|
5 |
+
"task_type": "causal_lm",
|
6 |
+
"torch_dtype": "bfloat16",
|
7 |
+
"attn_impl": null,
|
8 |
+
"num_labels": null,
|
9 |
+
"rope_scaling": null,
|
10 |
+
"device_map": null,
|
11 |
+
"local_repo_path": null,
|
12 |
+
"template": "deepseek_r1",
|
13 |
+
"system": null,
|
14 |
+
"max_length": 8192,
|
15 |
+
"truncation_strategy": "delete",
|
16 |
+
"max_pixels": null,
|
17 |
+
"tools_prompt": "react_en",
|
18 |
+
"padding_side": "right",
|
19 |
+
"loss_scale": "last_round",
|
20 |
+
"sequence_parallel_size": 1,
|
21 |
+
"use_chat_template": true,
|
22 |
+
"template_backend": "swift",
|
23 |
+
"dataset": [
|
24 |
+
"/home/wangruotong/LLM_test/data/train_400_dpo_0.5_random20.jsonl"
|
25 |
+
],
|
26 |
+
"val_dataset": [],
|
27 |
+
"split_dataset_ratio": 0.01,
|
28 |
+
"data_seed": 42,
|
29 |
+
"dataset_num_proc": 4,
|
30 |
+
"streaming": false,
|
31 |
+
"enable_cache": false,
|
32 |
+
"download_mode": "reuse_dataset_if_exists",
|
33 |
+
"strict": false,
|
34 |
+
"model_name": [
|
35 |
+
null,
|
36 |
+
null
|
37 |
+
],
|
38 |
+
"model_author": [
|
39 |
+
null,
|
40 |
+
null
|
41 |
+
],
|
42 |
+
"custom_dataset_info": [],
|
43 |
+
"quant_method": null,
|
44 |
+
"quant_bits": null,
|
45 |
+
"hqq_axis": null,
|
46 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
47 |
+
"bnb_4bit_quant_type": "nf4",
|
48 |
+
"bnb_4bit_use_double_quant": true,
|
49 |
+
"bnb_4bit_quant_storage": null,
|
50 |
+
"max_new_tokens": 64,
|
51 |
+
"temperature": 0.7,
|
52 |
+
"top_k": null,
|
53 |
+
"top_p": null,
|
54 |
+
"repetition_penalty": null,
|
55 |
+
"num_beams": 1,
|
56 |
+
"stream": false,
|
57 |
+
"stop_words": [],
|
58 |
+
"logprobs": false,
|
59 |
+
"top_logprobs": null,
|
60 |
+
"ckpt_dir": null,
|
61 |
+
"load_dataset_config": null,
|
62 |
+
"lora_modules": [],
|
63 |
+
"tuner_backend": "peft",
|
64 |
+
"train_type": "lora",
|
65 |
+
"adapters": [],
|
66 |
+
"seed": 42,
|
67 |
+
"model_kwargs": {},
|
68 |
+
"load_args": true,
|
69 |
+
"load_data_args": false,
|
70 |
+
"use_hf": false,
|
71 |
+
"hub_token": null,
|
72 |
+
"custom_register_path": [],
|
73 |
+
"ignore_args_error": false,
|
74 |
+
"use_swift_lora": false,
|
75 |
+
"output_dir": "/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757",
|
76 |
+
"overwrite_output_dir": false,
|
77 |
+
"do_train": false,
|
78 |
+
"do_eval": false,
|
79 |
+
"do_predict": false,
|
80 |
+
"eval_strategy": "steps",
|
81 |
+
"prediction_loss_only": false,
|
82 |
+
"per_device_train_batch_size": 1,
|
83 |
+
"per_device_eval_batch_size": 1,
|
84 |
+
"per_gpu_train_batch_size": null,
|
85 |
+
"per_gpu_eval_batch_size": null,
|
86 |
+
"gradient_accumulation_steps": 8,
|
87 |
+
"eval_accumulation_steps": null,
|
88 |
+
"eval_delay": 0,
|
89 |
+
"torch_empty_cache_steps": null,
|
90 |
+
"learning_rate": 0.0001,
|
91 |
+
"weight_decay": 0.1,
|
92 |
+
"adam_beta1": 0.9,
|
93 |
+
"adam_beta2": 0.999,
|
94 |
+
"adam_epsilon": 1e-08,
|
95 |
+
"max_grad_norm": 1.0,
|
96 |
+
"num_train_epochs": 5.0,
|
97 |
+
"max_steps": -1,
|
98 |
+
"lr_scheduler_type": "cosine",
|
99 |
+
"lr_scheduler_kwargs": null,
|
100 |
+
"warmup_ratio": 0.05,
|
101 |
+
"warmup_steps": 0,
|
102 |
+
"log_level": "passive",
|
103 |
+
"log_level_replica": "warning",
|
104 |
+
"log_on_each_node": true,
|
105 |
+
"logging_dir": "/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/runs",
|
106 |
+
"logging_strategy": "steps",
|
107 |
+
"logging_first_step": true,
|
108 |
+
"logging_steps": 5,
|
109 |
+
"logging_nan_inf_filter": true,
|
110 |
+
"save_strategy": "steps",
|
111 |
+
"save_steps": 20.0,
|
112 |
+
"save_total_limit": 100,
|
113 |
+
"save_safetensors": true,
|
114 |
+
"save_on_each_node": false,
|
115 |
+
"save_only_model": false,
|
116 |
+
"restore_callback_states_from_checkpoint": false,
|
117 |
+
"no_cuda": false,
|
118 |
+
"use_cpu": false,
|
119 |
+
"use_mps_device": false,
|
120 |
+
"jit_mode_eval": false,
|
121 |
+
"use_ipex": false,
|
122 |
+
"bf16": true,
|
123 |
+
"fp16": false,
|
124 |
+
"fp16_opt_level": "O1",
|
125 |
+
"half_precision_backend": "auto",
|
126 |
+
"bf16_full_eval": false,
|
127 |
+
"fp16_full_eval": false,
|
128 |
+
"tf32": null,
|
129 |
+
"local_rank": 0,
|
130 |
+
"ddp_backend": null,
|
131 |
+
"tpu_num_cores": null,
|
132 |
+
"tpu_metrics_debug": false,
|
133 |
+
"debug": null,
|
134 |
+
"dataloader_drop_last": false,
|
135 |
+
"eval_steps": 20.0,
|
136 |
+
"dataloader_num_workers": 4,
|
137 |
+
"dataloader_prefetch_factor": null,
|
138 |
+
"past_index": -1,
|
139 |
+
"run_name": null,
|
140 |
+
"disable_tqdm": null,
|
141 |
+
"remove_unused_columns": false,
|
142 |
+
"label_names": null,
|
143 |
+
"load_best_model_at_end": false,
|
144 |
+
"metric_for_best_model": "loss",
|
145 |
+
"greater_is_better": false,
|
146 |
+
"ignore_data_skip": false,
|
147 |
+
"fsdp": "",
|
148 |
+
"fsdp_min_num_params": 0,
|
149 |
+
"fsdp_config": null,
|
150 |
+
"fsdp_transformer_layer_cls_to_wrap": null,
|
151 |
+
"accelerator_config": {
|
152 |
+
"dispatch_batches": false
|
153 |
+
},
|
154 |
+
"deepspeed": {
|
155 |
+
"fp16": {
|
156 |
+
"enabled": "auto",
|
157 |
+
"loss_scale": 0,
|
158 |
+
"loss_scale_window": 1000,
|
159 |
+
"initial_scale_power": 16,
|
160 |
+
"hysteresis": 2,
|
161 |
+
"min_loss_scale": 1
|
162 |
+
},
|
163 |
+
"bf16": {
|
164 |
+
"enabled": "auto"
|
165 |
+
},
|
166 |
+
"zero_optimization": {
|
167 |
+
"stage": 3,
|
168 |
+
"offload_optimizer": {
|
169 |
+
"device": "none",
|
170 |
+
"pin_memory": true
|
171 |
+
},
|
172 |
+
"offload_param": {
|
173 |
+
"device": "none",
|
174 |
+
"pin_memory": true
|
175 |
+
},
|
176 |
+
"overlap_comm": true,
|
177 |
+
"contiguous_gradients": true,
|
178 |
+
"sub_group_size": 1000000000.0,
|
179 |
+
"reduce_bucket_size": "auto",
|
180 |
+
"stage3_prefetch_bucket_size": "auto",
|
181 |
+
"stage3_param_persistence_threshold": "auto",
|
182 |
+
"stage3_max_live_parameters": 1000000000.0,
|
183 |
+
"stage3_max_reuse_distance": 1000000000.0,
|
184 |
+
"stage3_gather_16bit_weights_on_model_save": true
|
185 |
+
},
|
186 |
+
"gradient_accumulation_steps": "auto",
|
187 |
+
"gradient_clipping": "auto",
|
188 |
+
"steps_per_print": 2000,
|
189 |
+
"train_batch_size": "auto",
|
190 |
+
"train_micro_batch_size_per_gpu": "auto",
|
191 |
+
"wall_clock_breakdown": false
|
192 |
+
},
|
193 |
+
"label_smoothing_factor": 0.0,
|
194 |
+
"optim": "adamw_torch",
|
195 |
+
"optim_args": null,
|
196 |
+
"adafactor": false,
|
197 |
+
"group_by_length": false,
|
198 |
+
"length_column_name": "length",
|
199 |
+
"report_to": [
|
200 |
+
"tensorboard"
|
201 |
+
],
|
202 |
+
"ddp_find_unused_parameters": null,
|
203 |
+
"ddp_bucket_cap_mb": null,
|
204 |
+
"ddp_broadcast_buffers": null,
|
205 |
+
"dataloader_pin_memory": true,
|
206 |
+
"dataloader_persistent_workers": false,
|
207 |
+
"skip_memory_metrics": true,
|
208 |
+
"use_legacy_prediction_loop": false,
|
209 |
+
"push_to_hub": false,
|
210 |
+
"resume_from_checkpoint": null,
|
211 |
+
"hub_model_id": null,
|
212 |
+
"hub_strategy": "every_save",
|
213 |
+
"hub_private_repo": null,
|
214 |
+
"hub_always_push": false,
|
215 |
+
"gradient_checkpointing": true,
|
216 |
+
"gradient_checkpointing_kwargs": null,
|
217 |
+
"include_inputs_for_metrics": false,
|
218 |
+
"include_for_metrics": [],
|
219 |
+
"eval_do_concat_batches": true,
|
220 |
+
"fp16_backend": "auto",
|
221 |
+
"evaluation_strategy": "steps",
|
222 |
+
"push_to_hub_model_id": null,
|
223 |
+
"push_to_hub_organization": null,
|
224 |
+
"push_to_hub_token": null,
|
225 |
+
"mp_parameters": "",
|
226 |
+
"auto_find_batch_size": false,
|
227 |
+
"full_determinism": false,
|
228 |
+
"torchdynamo": null,
|
229 |
+
"ray_scope": "last",
|
230 |
+
"ddp_timeout": 1800,
|
231 |
+
"torch_compile": false,
|
232 |
+
"torch_compile_backend": null,
|
233 |
+
"torch_compile_mode": null,
|
234 |
+
"dispatch_batches": null,
|
235 |
+
"split_batches": null,
|
236 |
+
"include_tokens_per_second": false,
|
237 |
+
"include_num_input_tokens_seen": false,
|
238 |
+
"neftune_noise_alpha": null,
|
239 |
+
"optim_target_modules": null,
|
240 |
+
"batch_eval_metrics": false,
|
241 |
+
"eval_on_start": false,
|
242 |
+
"use_liger_kernel": false,
|
243 |
+
"eval_use_gather_object": false,
|
244 |
+
"average_tokens_across_devices": false,
|
245 |
+
"sortish_sampler": false,
|
246 |
+
"predict_with_generate": false,
|
247 |
+
"generation_max_length": null,
|
248 |
+
"generation_num_beams": null,
|
249 |
+
"generation_config": null,
|
250 |
+
"freeze_parameters": [],
|
251 |
+
"freeze_parameters_ratio": 0.0,
|
252 |
+
"trainable_parameters": [],
|
253 |
+
"freeze_llm": false,
|
254 |
+
"freeze_vit": true,
|
255 |
+
"freeze_aligner": true,
|
256 |
+
"target_modules": [
|
257 |
+
"all-linear"
|
258 |
+
],
|
259 |
+
"target_regex": null,
|
260 |
+
"modules_to_save": [],
|
261 |
+
"lora_rank": 8,
|
262 |
+
"lora_alpha": 32,
|
263 |
+
"lora_dropout": 0.05,
|
264 |
+
"lora_bias": "none",
|
265 |
+
"lora_dtype": null,
|
266 |
+
"lorap_lr_ratio": null,
|
267 |
+
"use_rslora": false,
|
268 |
+
"use_dora": false,
|
269 |
+
"lora_ga_batch_size": 2,
|
270 |
+
"lora_ga_iters": 2,
|
271 |
+
"lora_ga_max_length": 1024,
|
272 |
+
"lora_ga_direction": "ArB2r",
|
273 |
+
"lora_ga_scale": "stable",
|
274 |
+
"lora_ga_stable_gamma": 16,
|
275 |
+
"init_weights": true,
|
276 |
+
"fourier_n_frequency": 2000,
|
277 |
+
"fourier_scaling": 300.0,
|
278 |
+
"boft_block_size": 4,
|
279 |
+
"boft_block_num": 0,
|
280 |
+
"boft_n_butterfly_factor": 1,
|
281 |
+
"boft_dropout": 0.0,
|
282 |
+
"vera_rank": 256,
|
283 |
+
"vera_projection_prng_key": 0,
|
284 |
+
"vera_dropout": 0.0,
|
285 |
+
"vera_d_initial": 0.1,
|
286 |
+
"adapter_act": "gelu",
|
287 |
+
"adapter_length": 128,
|
288 |
+
"use_galore": false,
|
289 |
+
"galore_target_modules": null,
|
290 |
+
"galore_rank": 128,
|
291 |
+
"galore_update_proj_gap": 50,
|
292 |
+
"galore_scale": 1.0,
|
293 |
+
"galore_proj_type": "std",
|
294 |
+
"galore_optim_per_parameter": false,
|
295 |
+
"galore_with_embedding": false,
|
296 |
+
"galore_quantization": false,
|
297 |
+
"galore_proj_quant": false,
|
298 |
+
"galore_proj_bits": 4,
|
299 |
+
"galore_proj_group_size": 256,
|
300 |
+
"galore_cos_threshold": 0.4,
|
301 |
+
"galore_gamma_proj": 2,
|
302 |
+
"galore_queue_size": 5,
|
303 |
+
"adalora_target_r": 8,
|
304 |
+
"adalora_init_r": 12,
|
305 |
+
"adalora_tinit": 0,
|
306 |
+
"adalora_tfinal": 0,
|
307 |
+
"adalora_deltaT": 1,
|
308 |
+
"adalora_beta1": 0.85,
|
309 |
+
"adalora_beta2": 0.85,
|
310 |
+
"adalora_orth_reg_weight": 0.5,
|
311 |
+
"llamapro_num_new_blocks": 4,
|
312 |
+
"llamapro_num_groups": null,
|
313 |
+
"lisa_activated_layers": 0,
|
314 |
+
"lisa_step_interval": 20,
|
315 |
+
"reft_layer_key": null,
|
316 |
+
"reft_layers": null,
|
317 |
+
"reft_rank": 4,
|
318 |
+
"reft_intervention_type": "LoreftIntervention",
|
319 |
+
"reft_args": null,
|
320 |
+
"use_liger": false,
|
321 |
+
"model_layer_cls_name": null,
|
322 |
+
"metric_warmup_step": 0,
|
323 |
+
"fsdp_num": 1,
|
324 |
+
"acc_steps": 1,
|
325 |
+
"add_version": true,
|
326 |
+
"resume_only_model": false,
|
327 |
+
"check_model": true,
|
328 |
+
"packing": false,
|
329 |
+
"lazy_tokenize": false,
|
330 |
+
"loss_type": "sigmoid",
|
331 |
+
"optimizer": null,
|
332 |
+
"metric": null,
|
333 |
+
"acc_strategy": "token",
|
334 |
+
"reward_model": null,
|
335 |
+
"reward_adapters": [],
|
336 |
+
"reward_model_type": null,
|
337 |
+
"reward_model_revision": null,
|
338 |
+
"num_ppo_epochs": 4,
|
339 |
+
"whiten_rewards": false,
|
340 |
+
"kl_coef": 0.05,
|
341 |
+
"cliprange": 0.2,
|
342 |
+
"vf_coef": 0.1,
|
343 |
+
"cliprange_value": 0.2,
|
344 |
+
"gamma": 1.0,
|
345 |
+
"lam": 0.95,
|
346 |
+
"num_mini_batches": 1,
|
347 |
+
"local_rollout_forward_batch_size": 64,
|
348 |
+
"num_sample_generations": 10,
|
349 |
+
"response_length": 512,
|
350 |
+
"missing_eos_penalty": null,
|
351 |
+
"rlhf_type": "dpo",
|
352 |
+
"ref_model": null,
|
353 |
+
"ref_model_type": null,
|
354 |
+
"ref_model_revision": null,
|
355 |
+
"beta": 0.1,
|
356 |
+
"label_smoothing": 0,
|
357 |
+
"rpo_alpha": 1.0,
|
358 |
+
"cpo_alpha": 1.0,
|
359 |
+
"simpo_gamma": 1,
|
360 |
+
"desirable_weight": 1.0,
|
361 |
+
"undesirable_weight": 1.0,
|
362 |
+
"rank": 0,
|
363 |
+
"global_world_size": 2,
|
364 |
+
"local_world_size": 2,
|
365 |
+
"model_suffix": "deepseek-r1-1.5b",
|
366 |
+
"model_info": "ModelInfo(model_type='deepseek_r1_distill', model_dir='/home/wangruotong/LLM_test/Models/deepseek-r1-1.5b', torch_dtype=torch.bfloat16, max_model_len=131072, quant_method=None, quant_bits=None, config=None, task_type='causal_lm', num_labels=None)",
|
367 |
+
"model_meta": "ModelMeta(model_type='deepseek_r1_distill', model_groups=[ModelGroup(models=[Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-7B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-7B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-14B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-14B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-32B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-32B', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=['transformers>=4.37'], tags=[]), ModelGroup(models=[Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-8B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-8B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-70B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-70B', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='deepseek_r1', get_function=<function get_model_tokenizer_with_flash_attn at 0x7f8a0540c940>, model_arch='llama', architectures=['Qwen2ForCausalLM', 'LlamaForCausalLM'], additional_saved_files=[], torch_dtype=None, is_multimodal=False, is_reward=False, task_type=None, ignore_patterns=[], requires=[], tags=[])",
|
368 |
+
"model_dir": "/home/wangruotong/LLM_test/Models/deepseek-r1-1.5b",
|
369 |
+
"hub": "<class 'swift.hub.hub.MSHub'>",
|
370 |
+
"training_args": "DPOConfig(output_dir='/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=8, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=0.0001, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=5.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=20, save_total_limit=100, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=20, dataloader_num_workers=4, dataloader_prefetch_factor=None, past_index=-1, run_name='/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 3, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'offload_param': {'device': 'none', 'pin_memory': True}, 'overlap_comm': True, 'contiguous_gradients': True, 'sub_group_size': 1000000000.0, 'reduce_bucket_size': 'auto', 'stage3_prefetch_bucket_size': 'auto', 'stage3_param_persistence_threshold': 'auto', 'stage3_max_live_parameters': 1000000000.0, 'stage3_max_reuse_distance': 1000000000.0, 'stage3_gather_16bit_weights_on_model_save': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', evaluation_strategy='steps', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, dispatch_batches=None, split_batches=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=False, eval_use_gather_object=False, average_tokens_across_devices=None, beta=0.1, label_smoothing=0, loss_type='sigmoid', label_pad_token_id=None, padding_value=None, truncation_mode='keep_end', max_length=8192, max_prompt_length=None, max_target_length=None, max_completion_length=None, is_encoder_decoder=False, disable_dropout=True, generate_during_eval=False, precompute_ref_log_probs=False, dataset_num_proc=4, model_init_kwargs=None, ref_model_init_kwargs=None, model_adapter_name=None, ref_adapter_name=None, reference_free=False, force_use_ref_model=False, f_divergence_type=<FDivergenceType.REVERSE_KL: 'reverse_kl'>, f_alpha_divergence_coef=1.0, sync_ref_model=False, ref_model_mixup_alpha=0.9, ref_model_sync_steps=64, rpo_alpha=1.0, acc_strategy='token', sequence_parallel_size=1, check_model=True, train_sampler_random=True, metric_warmup_step=0, train_dataset_sample=-1, fsdp_num=1, acc_steps=1, train_type='lora', optimizer=None, galore_config=None)"
|
371 |
+
}
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/global_step102/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7b83e3d91302e796c449274af6a53a12b36cc8fd74a8e571a5b04f2c7a5e71d
|
3 |
+
size 55398320
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/global_step102/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5301ef6db39cc13854a12bcb91379d626883bb3ae1195cae8ae79f759d01a67
|
3 |
+
size 55398320
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/global_step102/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e3f4e8e1a1b6f61ec61b812ff2ba61b0a7e5785cd590c83b6c86e91800cac88
|
3 |
+
size 388374
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/global_step102/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67b88a9dee27b13485971f65c54fd1abf7f03ebc80932a59b02e1688ef0cce8f
|
3 |
+
size 388374
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step102
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b074bf97f241c2662caa5ce956b03d1249c3cc0713b6aef7796673362754f98
|
3 |
+
size 14512
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58aed9e8d78903cb12015375021c729c3f6c5fd1a1e19e7aee6ddde57c3310b9
|
3 |
+
size 14512
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0565e80b661a234a9191c62faedc17b1ae5aa23c9527cc63349cbee8ced8b51d
|
3 |
+
size 1064
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/trainer_state.json
ADDED
@@ -0,0 +1,496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.62207031,
|
3 |
+
"best_model_checkpoint": "/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100",
|
4 |
+
"epoch": 4.161616161616162,
|
5 |
+
"eval_steps": 20,
|
6 |
+
"global_step": 100,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.04040404040404041,
|
13 |
+
"grad_norm": 1.24702048103415,
|
14 |
+
"learning_rate": 1.6666666666666667e-05,
|
15 |
+
"logits/chosen": -0.51953125,
|
16 |
+
"logits/rejected": -0.140625,
|
17 |
+
"logps/chosen": -552.0,
|
18 |
+
"logps/rejected": -1064.0,
|
19 |
+
"loss": 1.94580078125,
|
20 |
+
"memory(GiB)": 25.69,
|
21 |
+
"nll_loss": 1.5703125,
|
22 |
+
"rewards/accuracies": 0.0,
|
23 |
+
"rewards/chosen": 0.0,
|
24 |
+
"rewards/margins": 0.0,
|
25 |
+
"rewards/rejected": 0.0,
|
26 |
+
"step": 1,
|
27 |
+
"train_speed(iter/s)": 0.027363
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.20202020202020202,
|
31 |
+
"grad_norm": 1.5074727724564423,
|
32 |
+
"learning_rate": 8.333333333333334e-05,
|
33 |
+
"logits/chosen": -0.458984375,
|
34 |
+
"logits/rejected": 0.033935546875,
|
35 |
+
"logps/chosen": -712.0,
|
36 |
+
"logps/rejected": -708.0,
|
37 |
+
"loss": 2.4593505859375,
|
38 |
+
"memory(GiB)": 25.7,
|
39 |
+
"nll_loss": 1.515625,
|
40 |
+
"rewards/accuracies": 0.1875,
|
41 |
+
"rewards/chosen": 0.0234375,
|
42 |
+
"rewards/margins": -0.042236328125,
|
43 |
+
"rewards/rejected": 0.06591796875,
|
44 |
+
"step": 5,
|
45 |
+
"train_speed(iter/s)": 0.039476
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.40404040404040403,
|
49 |
+
"grad_norm": 0.9228133591717713,
|
50 |
+
"learning_rate": 9.969653386589748e-05,
|
51 |
+
"logits/chosen": -0.185546875,
|
52 |
+
"logits/rejected": -0.034912109375,
|
53 |
+
"logps/chosen": -636.0,
|
54 |
+
"logps/rejected": -600.0,
|
55 |
+
"loss": 1.776171875,
|
56 |
+
"memory(GiB)": 25.7,
|
57 |
+
"nll_loss": 1.1171875,
|
58 |
+
"rewards/accuracies": 0.75,
|
59 |
+
"rewards/chosen": 0.66796875,
|
60 |
+
"rewards/margins": 0.63671875,
|
61 |
+
"rewards/rejected": 0.03369140625,
|
62 |
+
"step": 10,
|
63 |
+
"train_speed(iter/s)": 0.042464
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.6060606060606061,
|
67 |
+
"grad_norm": 0.7395575770882112,
|
68 |
+
"learning_rate": 9.847001329696653e-05,
|
69 |
+
"logits/chosen": -0.51171875,
|
70 |
+
"logits/rejected": -0.07568359375,
|
71 |
+
"logps/chosen": -652.0,
|
72 |
+
"logps/rejected": -668.0,
|
73 |
+
"loss": 1.723095703125,
|
74 |
+
"memory(GiB)": 25.7,
|
75 |
+
"nll_loss": 1.4140625,
|
76 |
+
"rewards/accuracies": 0.949999988079071,
|
77 |
+
"rewards/chosen": 2.609375,
|
78 |
+
"rewards/margins": 2.203125,
|
79 |
+
"rewards/rejected": 0.408203125,
|
80 |
+
"step": 15,
|
81 |
+
"train_speed(iter/s)": 0.043941
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.8080808080808081,
|
85 |
+
"grad_norm": 0.26101957851244034,
|
86 |
+
"learning_rate": 9.632470336074009e-05,
|
87 |
+
"logits/chosen": -0.72265625,
|
88 |
+
"logits/rejected": -0.06982421875,
|
89 |
+
"logps/chosen": -418.0,
|
90 |
+
"logps/rejected": -596.0,
|
91 |
+
"loss": 1.1149658203125,
|
92 |
+
"memory(GiB)": 25.7,
|
93 |
+
"nll_loss": 1.078125,
|
94 |
+
"rewards/accuracies": 1.0,
|
95 |
+
"rewards/chosen": 5.6875,
|
96 |
+
"rewards/margins": 3.328125,
|
97 |
+
"rewards/rejected": 2.359375,
|
98 |
+
"step": 20,
|
99 |
+
"train_speed(iter/s)": 0.04473
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.8080808080808081,
|
103 |
+
"eval_logits/chosen": -0.453125,
|
104 |
+
"eval_logits/rejected": -1.0234375,
|
105 |
+
"eval_logps/chosen": -1224.0,
|
106 |
+
"eval_logps/rejected": -362.0,
|
107 |
+
"eval_loss": 0.78369140625,
|
108 |
+
"eval_nll_loss": 0.9921875,
|
109 |
+
"eval_rewards/accuracies": 1.0,
|
110 |
+
"eval_rewards/chosen": 6.46875,
|
111 |
+
"eval_rewards/margins": 3.40625,
|
112 |
+
"eval_rewards/rejected": 3.0625,
|
113 |
+
"eval_runtime": 2.4718,
|
114 |
+
"eval_samples_per_second": 1.618,
|
115 |
+
"eval_steps_per_second": 0.809,
|
116 |
+
"step": 20
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 1.0404040404040404,
|
120 |
+
"grad_norm": 0.14339630587567886,
|
121 |
+
"learning_rate": 9.330127018922194e-05,
|
122 |
+
"logits/chosen": -0.296875,
|
123 |
+
"logits/rejected": 0.06689453125,
|
124 |
+
"logps/chosen": -552.0,
|
125 |
+
"logps/rejected": -600.0,
|
126 |
+
"loss": 0.9431640625,
|
127 |
+
"memory(GiB)": 25.7,
|
128 |
+
"nll_loss": 0.87890625,
|
129 |
+
"rewards/accuracies": 0.9545454382896423,
|
130 |
+
"rewards/chosen": 7.65625,
|
131 |
+
"rewards/margins": 5.5,
|
132 |
+
"rewards/rejected": 2.15625,
|
133 |
+
"step": 25,
|
134 |
+
"train_speed(iter/s)": 0.044105
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 1.2424242424242424,
|
138 |
+
"grad_norm": 0.10599759576627858,
|
139 |
+
"learning_rate": 8.945702546981969e-05,
|
140 |
+
"logits/chosen": -0.390625,
|
141 |
+
"logits/rejected": -0.119140625,
|
142 |
+
"logps/chosen": -544.0,
|
143 |
+
"logps/rejected": -632.0,
|
144 |
+
"loss": 0.8330078125,
|
145 |
+
"memory(GiB)": 25.7,
|
146 |
+
"nll_loss": 0.87890625,
|
147 |
+
"rewards/accuracies": 1.0,
|
148 |
+
"rewards/chosen": 8.875,
|
149 |
+
"rewards/margins": 7.8125,
|
150 |
+
"rewards/rejected": 1.03125,
|
151 |
+
"step": 30,
|
152 |
+
"train_speed(iter/s)": 0.044482
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 1.4444444444444444,
|
156 |
+
"grad_norm": 0.08272331943435543,
|
157 |
+
"learning_rate": 8.486484005469977e-05,
|
158 |
+
"logits/chosen": -0.462890625,
|
159 |
+
"logits/rejected": -0.1259765625,
|
160 |
+
"logps/chosen": -572.0,
|
161 |
+
"logps/rejected": -524.0,
|
162 |
+
"loss": 0.817724609375,
|
163 |
+
"memory(GiB)": 25.7,
|
164 |
+
"nll_loss": 0.82421875,
|
165 |
+
"rewards/accuracies": 1.0,
|
166 |
+
"rewards/chosen": 9.75,
|
167 |
+
"rewards/margins": 8.875,
|
168 |
+
"rewards/rejected": 0.81640625,
|
169 |
+
"step": 35,
|
170 |
+
"train_speed(iter/s)": 0.044712
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 1.6464646464646466,
|
174 |
+
"grad_norm": 0.0696400325437939,
|
175 |
+
"learning_rate": 7.961176263324901e-05,
|
176 |
+
"logits/chosen": -0.15234375,
|
177 |
+
"logits/rejected": 0.044189453125,
|
178 |
+
"logps/chosen": -564.0,
|
179 |
+
"logps/rejected": -656.0,
|
180 |
+
"loss": 0.7612060546875,
|
181 |
+
"memory(GiB)": 25.7,
|
182 |
+
"nll_loss": 0.8046875,
|
183 |
+
"rewards/accuracies": 1.0,
|
184 |
+
"rewards/chosen": 9.8125,
|
185 |
+
"rewards/margins": 8.3125,
|
186 |
+
"rewards/rejected": 1.4921875,
|
187 |
+
"step": 40,
|
188 |
+
"train_speed(iter/s)": 0.045037
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 1.6464646464646466,
|
192 |
+
"eval_logits/chosen": -0.4296875,
|
193 |
+
"eval_logits/rejected": -1.0390625,
|
194 |
+
"eval_logps/chosen": -1200.0,
|
195 |
+
"eval_logps/rejected": -362.0,
|
196 |
+
"eval_loss": 0.65625,
|
197 |
+
"eval_nll_loss": 0.82421875,
|
198 |
+
"eval_rewards/accuracies": 1.0,
|
199 |
+
"eval_rewards/chosen": 9.25,
|
200 |
+
"eval_rewards/margins": 6.0625,
|
201 |
+
"eval_rewards/rejected": 3.15625,
|
202 |
+
"eval_runtime": 2.5963,
|
203 |
+
"eval_samples_per_second": 1.541,
|
204 |
+
"eval_steps_per_second": 0.77,
|
205 |
+
"step": 40
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 1.8484848484848486,
|
209 |
+
"grad_norm": 0.07254373381418182,
|
210 |
+
"learning_rate": 7.379736965185368e-05,
|
211 |
+
"logits/chosen": -0.474609375,
|
212 |
+
"logits/rejected": 0.1015625,
|
213 |
+
"logps/chosen": -430.0,
|
214 |
+
"logps/rejected": -684.0,
|
215 |
+
"loss": 0.793756103515625,
|
216 |
+
"memory(GiB)": 25.7,
|
217 |
+
"nll_loss": 0.828125,
|
218 |
+
"rewards/accuracies": 1.0,
|
219 |
+
"rewards/chosen": 10.0,
|
220 |
+
"rewards/margins": 7.4375,
|
221 |
+
"rewards/rejected": 2.5625,
|
222 |
+
"step": 45,
|
223 |
+
"train_speed(iter/s)": 0.045165
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"epoch": 2.080808080808081,
|
227 |
+
"grad_norm": 0.09461146468300914,
|
228 |
+
"learning_rate": 6.753187775963773e-05,
|
229 |
+
"logits/chosen": -0.263671875,
|
230 |
+
"logits/rejected": 0.1494140625,
|
231 |
+
"logps/chosen": -442.0,
|
232 |
+
"logps/rejected": -572.0,
|
233 |
+
"loss": 0.829718017578125,
|
234 |
+
"memory(GiB)": 25.7,
|
235 |
+
"nll_loss": 0.7421875,
|
236 |
+
"rewards/accuracies": 1.0,
|
237 |
+
"rewards/chosen": 10.875,
|
238 |
+
"rewards/margins": 8.5,
|
239 |
+
"rewards/rejected": 2.40625,
|
240 |
+
"step": 50,
|
241 |
+
"train_speed(iter/s)": 0.044966
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.282828282828283,
|
245 |
+
"grad_norm": 0.04766707435910784,
|
246 |
+
"learning_rate": 6.09340545603188e-05,
|
247 |
+
"logits/chosen": -0.058349609375,
|
248 |
+
"logits/rejected": -0.01220703125,
|
249 |
+
"logps/chosen": -464.0,
|
250 |
+
"logps/rejected": -496.0,
|
251 |
+
"loss": 0.75626220703125,
|
252 |
+
"memory(GiB)": 25.7,
|
253 |
+
"nll_loss": 0.75390625,
|
254 |
+
"rewards/accuracies": 1.0,
|
255 |
+
"rewards/chosen": 11.3125,
|
256 |
+
"rewards/margins": 8.6875,
|
257 |
+
"rewards/rejected": 2.65625,
|
258 |
+
"step": 55,
|
259 |
+
"train_speed(iter/s)": 0.045216
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"epoch": 2.484848484848485,
|
263 |
+
"grad_norm": 0.06131605999351018,
|
264 |
+
"learning_rate": 5.4128967273616625e-05,
|
265 |
+
"logits/chosen": -0.125,
|
266 |
+
"logits/rejected": 0.052490234375,
|
267 |
+
"logps/chosen": -500.0,
|
268 |
+
"logps/rejected": -504.0,
|
269 |
+
"loss": 0.786712646484375,
|
270 |
+
"memory(GiB)": 25.7,
|
271 |
+
"nll_loss": 0.72265625,
|
272 |
+
"rewards/accuracies": 1.0,
|
273 |
+
"rewards/chosen": 11.875,
|
274 |
+
"rewards/margins": 8.9375,
|
275 |
+
"rewards/rejected": 2.953125,
|
276 |
+
"step": 60,
|
277 |
+
"train_speed(iter/s)": 0.0454
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 2.484848484848485,
|
281 |
+
"eval_logits/chosen": -0.30859375,
|
282 |
+
"eval_logits/rejected": -1.0,
|
283 |
+
"eval_logps/chosen": -1176.0,
|
284 |
+
"eval_logps/rejected": -350.0,
|
285 |
+
"eval_loss": 0.634765625,
|
286 |
+
"eval_nll_loss": 0.81640625,
|
287 |
+
"eval_rewards/accuracies": 1.0,
|
288 |
+
"eval_rewards/chosen": 11.625,
|
289 |
+
"eval_rewards/margins": 7.28125,
|
290 |
+
"eval_rewards/rejected": 4.3125,
|
291 |
+
"eval_runtime": 2.5509,
|
292 |
+
"eval_samples_per_second": 1.568,
|
293 |
+
"eval_steps_per_second": 0.784,
|
294 |
+
"step": 60
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.686868686868687,
|
298 |
+
"grad_norm": 0.06676936632421913,
|
299 |
+
"learning_rate": 4.7245611982206724e-05,
|
300 |
+
"logits/chosen": -0.38671875,
|
301 |
+
"logits/rejected": -0.025146484375,
|
302 |
+
"logps/chosen": -560.0,
|
303 |
+
"logps/rejected": -676.0,
|
304 |
+
"loss": 0.79617919921875,
|
305 |
+
"memory(GiB)": 25.7,
|
306 |
+
"nll_loss": 0.7578125,
|
307 |
+
"rewards/accuracies": 1.0,
|
308 |
+
"rewards/chosen": 11.3125,
|
309 |
+
"rewards/margins": 8.0625,
|
310 |
+
"rewards/rejected": 3.234375,
|
311 |
+
"step": 65,
|
312 |
+
"train_speed(iter/s)": 0.045398
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 2.888888888888889,
|
316 |
+
"grad_norm": 0.05652873146800221,
|
317 |
+
"learning_rate": 4.0414468403813095e-05,
|
318 |
+
"logits/chosen": -0.36328125,
|
319 |
+
"logits/rejected": 0.306640625,
|
320 |
+
"logps/chosen": -360.0,
|
321 |
+
"logps/rejected": -644.0,
|
322 |
+
"loss": 0.68297119140625,
|
323 |
+
"memory(GiB)": 25.7,
|
324 |
+
"nll_loss": 0.66015625,
|
325 |
+
"rewards/accuracies": 1.0,
|
326 |
+
"rewards/chosen": 11.5,
|
327 |
+
"rewards/margins": 8.375,
|
328 |
+
"rewards/rejected": 3.09375,
|
329 |
+
"step": 70,
|
330 |
+
"train_speed(iter/s)": 0.04555
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"epoch": 3.121212121212121,
|
334 |
+
"grad_norm": 0.06536273458529179,
|
335 |
+
"learning_rate": 3.3765026539765834e-05,
|
336 |
+
"logits/chosen": -0.1416015625,
|
337 |
+
"logits/rejected": 0.011962890625,
|
338 |
+
"logps/chosen": -536.0,
|
339 |
+
"logps/rejected": -556.0,
|
340 |
+
"loss": 0.849755859375,
|
341 |
+
"memory(GiB)": 25.7,
|
342 |
+
"nll_loss": 0.703125,
|
343 |
+
"rewards/accuracies": 1.0,
|
344 |
+
"rewards/chosen": 11.9375,
|
345 |
+
"rewards/margins": 8.9375,
|
346 |
+
"rewards/rejected": 3.015625,
|
347 |
+
"step": 75,
|
348 |
+
"train_speed(iter/s)": 0.045382
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 3.323232323232323,
|
352 |
+
"grad_norm": 0.04825974409413595,
|
353 |
+
"learning_rate": 2.7423332084455544e-05,
|
354 |
+
"logits/chosen": -0.1064453125,
|
355 |
+
"logits/rejected": -0.043701171875,
|
356 |
+
"logps/chosen": -502.0,
|
357 |
+
"logps/rejected": -458.0,
|
358 |
+
"loss": 0.706292724609375,
|
359 |
+
"memory(GiB)": 25.7,
|
360 |
+
"nll_loss": 0.69921875,
|
361 |
+
"rewards/accuracies": 1.0,
|
362 |
+
"rewards/chosen": 12.0625,
|
363 |
+
"rewards/margins": 8.9375,
|
364 |
+
"rewards/rejected": 3.15625,
|
365 |
+
"step": 80,
|
366 |
+
"train_speed(iter/s)": 0.045536
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 3.323232323232323,
|
370 |
+
"eval_logits/chosen": -0.2421875,
|
371 |
+
"eval_logits/rejected": -0.9765625,
|
372 |
+
"eval_logps/chosen": -1168.0,
|
373 |
+
"eval_logps/rejected": -348.0,
|
374 |
+
"eval_loss": 0.6259765625,
|
375 |
+
"eval_nll_loss": 0.80859375,
|
376 |
+
"eval_rewards/accuracies": 1.0,
|
377 |
+
"eval_rewards/chosen": 12.375,
|
378 |
+
"eval_rewards/margins": 7.875,
|
379 |
+
"eval_rewards/rejected": 4.5,
|
380 |
+
"eval_runtime": 2.4567,
|
381 |
+
"eval_samples_per_second": 1.628,
|
382 |
+
"eval_steps_per_second": 0.814,
|
383 |
+
"step": 80
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 3.525252525252525,
|
387 |
+
"grad_norm": 0.056385847668733294,
|
388 |
+
"learning_rate": 2.150959712448669e-05,
|
389 |
+
"logits/chosen": -0.2392578125,
|
390 |
+
"logits/rejected": 0.15625,
|
391 |
+
"logps/chosen": -604.0,
|
392 |
+
"logps/rejected": -616.0,
|
393 |
+
"loss": 0.7456787109375,
|
394 |
+
"memory(GiB)": 25.7,
|
395 |
+
"nll_loss": 0.8046875,
|
396 |
+
"rewards/accuracies": 1.0,
|
397 |
+
"rewards/chosen": 12.6875,
|
398 |
+
"rewards/margins": 9.8125,
|
399 |
+
"rewards/rejected": 2.84375,
|
400 |
+
"step": 85,
|
401 |
+
"train_speed(iter/s)": 0.045586
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 3.7272727272727275,
|
405 |
+
"grad_norm": 0.05524440051382823,
|
406 |
+
"learning_rate": 1.6135921418712956e-05,
|
407 |
+
"logits/chosen": -0.294921875,
|
408 |
+
"logits/rejected": 0.1328125,
|
409 |
+
"logps/chosen": -432.0,
|
410 |
+
"logps/rejected": -588.0,
|
411 |
+
"loss": 0.671728515625,
|
412 |
+
"memory(GiB)": 25.7,
|
413 |
+
"nll_loss": 0.6484375,
|
414 |
+
"rewards/accuracies": 1.0,
|
415 |
+
"rewards/chosen": 11.75,
|
416 |
+
"rewards/margins": 8.9375,
|
417 |
+
"rewards/rejected": 2.859375,
|
418 |
+
"step": 90,
|
419 |
+
"train_speed(iter/s)": 0.045721
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 3.929292929292929,
|
423 |
+
"grad_norm": 0.05977092210820939,
|
424 |
+
"learning_rate": 1.1404167454183957e-05,
|
425 |
+
"logits/chosen": -0.361328125,
|
426 |
+
"logits/rejected": 0.185546875,
|
427 |
+
"logps/chosen": -366.0,
|
428 |
+
"logps/rejected": -648.0,
|
429 |
+
"loss": 0.734991455078125,
|
430 |
+
"memory(GiB)": 25.7,
|
431 |
+
"nll_loss": 0.69921875,
|
432 |
+
"rewards/accuracies": 1.0,
|
433 |
+
"rewards/chosen": 11.5625,
|
434 |
+
"rewards/margins": 9.0,
|
435 |
+
"rewards/rejected": 2.5625,
|
436 |
+
"step": 95,
|
437 |
+
"train_speed(iter/s)": 0.045829
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 4.161616161616162,
|
441 |
+
"grad_norm": 0.06596771804969032,
|
442 |
+
"learning_rate": 7.404029558083653e-06,
|
443 |
+
"logits/chosen": -0.427734375,
|
444 |
+
"logits/rejected": 0.251953125,
|
445 |
+
"logps/chosen": -366.0,
|
446 |
+
"logps/rejected": -620.0,
|
447 |
+
"loss": 0.818841552734375,
|
448 |
+
"memory(GiB)": 25.7,
|
449 |
+
"nll_loss": 0.65234375,
|
450 |
+
"rewards/accuracies": 1.0,
|
451 |
+
"rewards/chosen": 11.6875,
|
452 |
+
"rewards/margins": 8.4375,
|
453 |
+
"rewards/rejected": 3.234375,
|
454 |
+
"step": 100,
|
455 |
+
"train_speed(iter/s)": 0.045708
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 4.161616161616162,
|
459 |
+
"eval_logits/chosen": -0.21875,
|
460 |
+
"eval_logits/rejected": -0.9609375,
|
461 |
+
"eval_logps/chosen": -1160.0,
|
462 |
+
"eval_logps/rejected": -348.0,
|
463 |
+
"eval_loss": 0.6220703125,
|
464 |
+
"eval_nll_loss": 0.8046875,
|
465 |
+
"eval_rewards/accuracies": 1.0,
|
466 |
+
"eval_rewards/chosen": 13.25,
|
467 |
+
"eval_rewards/margins": 8.8125,
|
468 |
+
"eval_rewards/rejected": 4.40625,
|
469 |
+
"eval_runtime": 2.2433,
|
470 |
+
"eval_samples_per_second": 1.783,
|
471 |
+
"eval_steps_per_second": 0.892,
|
472 |
+
"step": 100
|
473 |
+
}
|
474 |
+
],
|
475 |
+
"logging_steps": 5,
|
476 |
+
"max_steps": 120,
|
477 |
+
"num_input_tokens_seen": 0,
|
478 |
+
"num_train_epochs": 5,
|
479 |
+
"save_steps": 20,
|
480 |
+
"stateful_callbacks": {
|
481 |
+
"TrainerControl": {
|
482 |
+
"args": {
|
483 |
+
"should_epoch_stop": false,
|
484 |
+
"should_evaluate": false,
|
485 |
+
"should_log": false,
|
486 |
+
"should_save": true,
|
487 |
+
"should_training_stop": false
|
488 |
+
},
|
489 |
+
"attributes": {}
|
490 |
+
}
|
491 |
+
},
|
492 |
+
"total_flos": 9413787058176.0,
|
493 |
+
"train_batch_size": 1,
|
494 |
+
"trial_name": null,
|
495 |
+
"trial_params": null
|
496 |
+
}
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c9971bed8fc8c96e32aeec854c7366dccfed250f1c481c02a2a99548410dab4
|
3 |
+
size 8888
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-100/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /home/wangruotong/LLM_test/Models/deepseek-r1-1.5b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/adapter_config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/home/wangruotong/LLM_test/Models/deepseek-r1-1.5b",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 32,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.05,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": [],
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 8,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"q_proj",
|
27 |
+
"o_proj",
|
28 |
+
"up_proj",
|
29 |
+
"k_proj",
|
30 |
+
"down_proj",
|
31 |
+
"gate_proj",
|
32 |
+
"v_proj"
|
33 |
+
],
|
34 |
+
"task_type": "CAUSAL_LM",
|
35 |
+
"use_dora": false,
|
36 |
+
"use_rslora": false
|
37 |
+
}
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da89b39f2e5478257b08c125b632b90bdf712de8bbf9dc62267950fdcec4025b
|
3 |
+
size 18516456
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/additional_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"lora_dtype": null, "lorap_lr_ratio": null, "lorap_emb_lr": 1e-06}
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/args.json
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "/home/wangruotong/LLM_test/Models/deepseek-r1-1.5b",
|
3 |
+
"model_type": "deepseek_r1_distill",
|
4 |
+
"model_revision": null,
|
5 |
+
"task_type": "causal_lm",
|
6 |
+
"torch_dtype": "bfloat16",
|
7 |
+
"attn_impl": null,
|
8 |
+
"num_labels": null,
|
9 |
+
"rope_scaling": null,
|
10 |
+
"device_map": null,
|
11 |
+
"local_repo_path": null,
|
12 |
+
"template": "deepseek_r1",
|
13 |
+
"system": null,
|
14 |
+
"max_length": 8192,
|
15 |
+
"truncation_strategy": "delete",
|
16 |
+
"max_pixels": null,
|
17 |
+
"tools_prompt": "react_en",
|
18 |
+
"padding_side": "right",
|
19 |
+
"loss_scale": "last_round",
|
20 |
+
"sequence_parallel_size": 1,
|
21 |
+
"use_chat_template": true,
|
22 |
+
"template_backend": "swift",
|
23 |
+
"dataset": [
|
24 |
+
"/home/wangruotong/LLM_test/data/train_400_dpo_0.5_random20.jsonl"
|
25 |
+
],
|
26 |
+
"val_dataset": [],
|
27 |
+
"split_dataset_ratio": 0.01,
|
28 |
+
"data_seed": 42,
|
29 |
+
"dataset_num_proc": 4,
|
30 |
+
"streaming": false,
|
31 |
+
"enable_cache": false,
|
32 |
+
"download_mode": "reuse_dataset_if_exists",
|
33 |
+
"strict": false,
|
34 |
+
"model_name": [
|
35 |
+
null,
|
36 |
+
null
|
37 |
+
],
|
38 |
+
"model_author": [
|
39 |
+
null,
|
40 |
+
null
|
41 |
+
],
|
42 |
+
"custom_dataset_info": [],
|
43 |
+
"quant_method": null,
|
44 |
+
"quant_bits": null,
|
45 |
+
"hqq_axis": null,
|
46 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
47 |
+
"bnb_4bit_quant_type": "nf4",
|
48 |
+
"bnb_4bit_use_double_quant": true,
|
49 |
+
"bnb_4bit_quant_storage": null,
|
50 |
+
"max_new_tokens": 64,
|
51 |
+
"temperature": 0.7,
|
52 |
+
"top_k": null,
|
53 |
+
"top_p": null,
|
54 |
+
"repetition_penalty": null,
|
55 |
+
"num_beams": 1,
|
56 |
+
"stream": false,
|
57 |
+
"stop_words": [],
|
58 |
+
"logprobs": false,
|
59 |
+
"top_logprobs": null,
|
60 |
+
"ckpt_dir": null,
|
61 |
+
"load_dataset_config": null,
|
62 |
+
"lora_modules": [],
|
63 |
+
"tuner_backend": "peft",
|
64 |
+
"train_type": "lora",
|
65 |
+
"adapters": [],
|
66 |
+
"seed": 42,
|
67 |
+
"model_kwargs": {},
|
68 |
+
"load_args": true,
|
69 |
+
"load_data_args": false,
|
70 |
+
"use_hf": false,
|
71 |
+
"hub_token": null,
|
72 |
+
"custom_register_path": [],
|
73 |
+
"ignore_args_error": false,
|
74 |
+
"use_swift_lora": false,
|
75 |
+
"output_dir": "/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757",
|
76 |
+
"overwrite_output_dir": false,
|
77 |
+
"do_train": false,
|
78 |
+
"do_eval": false,
|
79 |
+
"do_predict": false,
|
80 |
+
"eval_strategy": "steps",
|
81 |
+
"prediction_loss_only": false,
|
82 |
+
"per_device_train_batch_size": 1,
|
83 |
+
"per_device_eval_batch_size": 1,
|
84 |
+
"per_gpu_train_batch_size": null,
|
85 |
+
"per_gpu_eval_batch_size": null,
|
86 |
+
"gradient_accumulation_steps": 8,
|
87 |
+
"eval_accumulation_steps": null,
|
88 |
+
"eval_delay": 0,
|
89 |
+
"torch_empty_cache_steps": null,
|
90 |
+
"learning_rate": 0.0001,
|
91 |
+
"weight_decay": 0.1,
|
92 |
+
"adam_beta1": 0.9,
|
93 |
+
"adam_beta2": 0.999,
|
94 |
+
"adam_epsilon": 1e-08,
|
95 |
+
"max_grad_norm": 1.0,
|
96 |
+
"num_train_epochs": 5.0,
|
97 |
+
"max_steps": -1,
|
98 |
+
"lr_scheduler_type": "cosine",
|
99 |
+
"lr_scheduler_kwargs": null,
|
100 |
+
"warmup_ratio": 0.05,
|
101 |
+
"warmup_steps": 0,
|
102 |
+
"log_level": "passive",
|
103 |
+
"log_level_replica": "warning",
|
104 |
+
"log_on_each_node": true,
|
105 |
+
"logging_dir": "/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/runs",
|
106 |
+
"logging_strategy": "steps",
|
107 |
+
"logging_first_step": true,
|
108 |
+
"logging_steps": 5,
|
109 |
+
"logging_nan_inf_filter": true,
|
110 |
+
"save_strategy": "steps",
|
111 |
+
"save_steps": 20.0,
|
112 |
+
"save_total_limit": 100,
|
113 |
+
"save_safetensors": true,
|
114 |
+
"save_on_each_node": false,
|
115 |
+
"save_only_model": false,
|
116 |
+
"restore_callback_states_from_checkpoint": false,
|
117 |
+
"no_cuda": false,
|
118 |
+
"use_cpu": false,
|
119 |
+
"use_mps_device": false,
|
120 |
+
"jit_mode_eval": false,
|
121 |
+
"use_ipex": false,
|
122 |
+
"bf16": true,
|
123 |
+
"fp16": false,
|
124 |
+
"fp16_opt_level": "O1",
|
125 |
+
"half_precision_backend": "auto",
|
126 |
+
"bf16_full_eval": false,
|
127 |
+
"fp16_full_eval": false,
|
128 |
+
"tf32": null,
|
129 |
+
"local_rank": 0,
|
130 |
+
"ddp_backend": null,
|
131 |
+
"tpu_num_cores": null,
|
132 |
+
"tpu_metrics_debug": false,
|
133 |
+
"debug": null,
|
134 |
+
"dataloader_drop_last": false,
|
135 |
+
"eval_steps": 20.0,
|
136 |
+
"dataloader_num_workers": 4,
|
137 |
+
"dataloader_prefetch_factor": null,
|
138 |
+
"past_index": -1,
|
139 |
+
"run_name": null,
|
140 |
+
"disable_tqdm": null,
|
141 |
+
"remove_unused_columns": false,
|
142 |
+
"label_names": null,
|
143 |
+
"load_best_model_at_end": false,
|
144 |
+
"metric_for_best_model": "loss",
|
145 |
+
"greater_is_better": false,
|
146 |
+
"ignore_data_skip": false,
|
147 |
+
"fsdp": "",
|
148 |
+
"fsdp_min_num_params": 0,
|
149 |
+
"fsdp_config": null,
|
150 |
+
"fsdp_transformer_layer_cls_to_wrap": null,
|
151 |
+
"accelerator_config": {
|
152 |
+
"dispatch_batches": false
|
153 |
+
},
|
154 |
+
"deepspeed": {
|
155 |
+
"fp16": {
|
156 |
+
"enabled": "auto",
|
157 |
+
"loss_scale": 0,
|
158 |
+
"loss_scale_window": 1000,
|
159 |
+
"initial_scale_power": 16,
|
160 |
+
"hysteresis": 2,
|
161 |
+
"min_loss_scale": 1
|
162 |
+
},
|
163 |
+
"bf16": {
|
164 |
+
"enabled": "auto"
|
165 |
+
},
|
166 |
+
"zero_optimization": {
|
167 |
+
"stage": 3,
|
168 |
+
"offload_optimizer": {
|
169 |
+
"device": "none",
|
170 |
+
"pin_memory": true
|
171 |
+
},
|
172 |
+
"offload_param": {
|
173 |
+
"device": "none",
|
174 |
+
"pin_memory": true
|
175 |
+
},
|
176 |
+
"overlap_comm": true,
|
177 |
+
"contiguous_gradients": true,
|
178 |
+
"sub_group_size": 1000000000.0,
|
179 |
+
"reduce_bucket_size": "auto",
|
180 |
+
"stage3_prefetch_bucket_size": "auto",
|
181 |
+
"stage3_param_persistence_threshold": "auto",
|
182 |
+
"stage3_max_live_parameters": 1000000000.0,
|
183 |
+
"stage3_max_reuse_distance": 1000000000.0,
|
184 |
+
"stage3_gather_16bit_weights_on_model_save": true
|
185 |
+
},
|
186 |
+
"gradient_accumulation_steps": "auto",
|
187 |
+
"gradient_clipping": "auto",
|
188 |
+
"steps_per_print": 2000,
|
189 |
+
"train_batch_size": "auto",
|
190 |
+
"train_micro_batch_size_per_gpu": "auto",
|
191 |
+
"wall_clock_breakdown": false
|
192 |
+
},
|
193 |
+
"label_smoothing_factor": 0.0,
|
194 |
+
"optim": "adamw_torch",
|
195 |
+
"optim_args": null,
|
196 |
+
"adafactor": false,
|
197 |
+
"group_by_length": false,
|
198 |
+
"length_column_name": "length",
|
199 |
+
"report_to": [
|
200 |
+
"tensorboard"
|
201 |
+
],
|
202 |
+
"ddp_find_unused_parameters": null,
|
203 |
+
"ddp_bucket_cap_mb": null,
|
204 |
+
"ddp_broadcast_buffers": null,
|
205 |
+
"dataloader_pin_memory": true,
|
206 |
+
"dataloader_persistent_workers": false,
|
207 |
+
"skip_memory_metrics": true,
|
208 |
+
"use_legacy_prediction_loop": false,
|
209 |
+
"push_to_hub": false,
|
210 |
+
"resume_from_checkpoint": null,
|
211 |
+
"hub_model_id": null,
|
212 |
+
"hub_strategy": "every_save",
|
213 |
+
"hub_private_repo": null,
|
214 |
+
"hub_always_push": false,
|
215 |
+
"gradient_checkpointing": true,
|
216 |
+
"gradient_checkpointing_kwargs": null,
|
217 |
+
"include_inputs_for_metrics": false,
|
218 |
+
"include_for_metrics": [],
|
219 |
+
"eval_do_concat_batches": true,
|
220 |
+
"fp16_backend": "auto",
|
221 |
+
"evaluation_strategy": "steps",
|
222 |
+
"push_to_hub_model_id": null,
|
223 |
+
"push_to_hub_organization": null,
|
224 |
+
"push_to_hub_token": null,
|
225 |
+
"mp_parameters": "",
|
226 |
+
"auto_find_batch_size": false,
|
227 |
+
"full_determinism": false,
|
228 |
+
"torchdynamo": null,
|
229 |
+
"ray_scope": "last",
|
230 |
+
"ddp_timeout": 1800,
|
231 |
+
"torch_compile": false,
|
232 |
+
"torch_compile_backend": null,
|
233 |
+
"torch_compile_mode": null,
|
234 |
+
"dispatch_batches": null,
|
235 |
+
"split_batches": null,
|
236 |
+
"include_tokens_per_second": false,
|
237 |
+
"include_num_input_tokens_seen": false,
|
238 |
+
"neftune_noise_alpha": null,
|
239 |
+
"optim_target_modules": null,
|
240 |
+
"batch_eval_metrics": false,
|
241 |
+
"eval_on_start": false,
|
242 |
+
"use_liger_kernel": false,
|
243 |
+
"eval_use_gather_object": false,
|
244 |
+
"average_tokens_across_devices": false,
|
245 |
+
"sortish_sampler": false,
|
246 |
+
"predict_with_generate": false,
|
247 |
+
"generation_max_length": null,
|
248 |
+
"generation_num_beams": null,
|
249 |
+
"generation_config": null,
|
250 |
+
"freeze_parameters": [],
|
251 |
+
"freeze_parameters_ratio": 0.0,
|
252 |
+
"trainable_parameters": [],
|
253 |
+
"freeze_llm": false,
|
254 |
+
"freeze_vit": true,
|
255 |
+
"freeze_aligner": true,
|
256 |
+
"target_modules": [
|
257 |
+
"all-linear"
|
258 |
+
],
|
259 |
+
"target_regex": null,
|
260 |
+
"modules_to_save": [],
|
261 |
+
"lora_rank": 8,
|
262 |
+
"lora_alpha": 32,
|
263 |
+
"lora_dropout": 0.05,
|
264 |
+
"lora_bias": "none",
|
265 |
+
"lora_dtype": null,
|
266 |
+
"lorap_lr_ratio": null,
|
267 |
+
"use_rslora": false,
|
268 |
+
"use_dora": false,
|
269 |
+
"lora_ga_batch_size": 2,
|
270 |
+
"lora_ga_iters": 2,
|
271 |
+
"lora_ga_max_length": 1024,
|
272 |
+
"lora_ga_direction": "ArB2r",
|
273 |
+
"lora_ga_scale": "stable",
|
274 |
+
"lora_ga_stable_gamma": 16,
|
275 |
+
"init_weights": true,
|
276 |
+
"fourier_n_frequency": 2000,
|
277 |
+
"fourier_scaling": 300.0,
|
278 |
+
"boft_block_size": 4,
|
279 |
+
"boft_block_num": 0,
|
280 |
+
"boft_n_butterfly_factor": 1,
|
281 |
+
"boft_dropout": 0.0,
|
282 |
+
"vera_rank": 256,
|
283 |
+
"vera_projection_prng_key": 0,
|
284 |
+
"vera_dropout": 0.0,
|
285 |
+
"vera_d_initial": 0.1,
|
286 |
+
"adapter_act": "gelu",
|
287 |
+
"adapter_length": 128,
|
288 |
+
"use_galore": false,
|
289 |
+
"galore_target_modules": null,
|
290 |
+
"galore_rank": 128,
|
291 |
+
"galore_update_proj_gap": 50,
|
292 |
+
"galore_scale": 1.0,
|
293 |
+
"galore_proj_type": "std",
|
294 |
+
"galore_optim_per_parameter": false,
|
295 |
+
"galore_with_embedding": false,
|
296 |
+
"galore_quantization": false,
|
297 |
+
"galore_proj_quant": false,
|
298 |
+
"galore_proj_bits": 4,
|
299 |
+
"galore_proj_group_size": 256,
|
300 |
+
"galore_cos_threshold": 0.4,
|
301 |
+
"galore_gamma_proj": 2,
|
302 |
+
"galore_queue_size": 5,
|
303 |
+
"adalora_target_r": 8,
|
304 |
+
"adalora_init_r": 12,
|
305 |
+
"adalora_tinit": 0,
|
306 |
+
"adalora_tfinal": 0,
|
307 |
+
"adalora_deltaT": 1,
|
308 |
+
"adalora_beta1": 0.85,
|
309 |
+
"adalora_beta2": 0.85,
|
310 |
+
"adalora_orth_reg_weight": 0.5,
|
311 |
+
"llamapro_num_new_blocks": 4,
|
312 |
+
"llamapro_num_groups": null,
|
313 |
+
"lisa_activated_layers": 0,
|
314 |
+
"lisa_step_interval": 20,
|
315 |
+
"reft_layer_key": null,
|
316 |
+
"reft_layers": null,
|
317 |
+
"reft_rank": 4,
|
318 |
+
"reft_intervention_type": "LoreftIntervention",
|
319 |
+
"reft_args": null,
|
320 |
+
"use_liger": false,
|
321 |
+
"model_layer_cls_name": null,
|
322 |
+
"metric_warmup_step": 0,
|
323 |
+
"fsdp_num": 1,
|
324 |
+
"acc_steps": 1,
|
325 |
+
"add_version": true,
|
326 |
+
"resume_only_model": false,
|
327 |
+
"check_model": true,
|
328 |
+
"packing": false,
|
329 |
+
"lazy_tokenize": false,
|
330 |
+
"loss_type": "sigmoid",
|
331 |
+
"optimizer": null,
|
332 |
+
"metric": null,
|
333 |
+
"acc_strategy": "token",
|
334 |
+
"reward_model": null,
|
335 |
+
"reward_adapters": [],
|
336 |
+
"reward_model_type": null,
|
337 |
+
"reward_model_revision": null,
|
338 |
+
"num_ppo_epochs": 4,
|
339 |
+
"whiten_rewards": false,
|
340 |
+
"kl_coef": 0.05,
|
341 |
+
"cliprange": 0.2,
|
342 |
+
"vf_coef": 0.1,
|
343 |
+
"cliprange_value": 0.2,
|
344 |
+
"gamma": 1.0,
|
345 |
+
"lam": 0.95,
|
346 |
+
"num_mini_batches": 1,
|
347 |
+
"local_rollout_forward_batch_size": 64,
|
348 |
+
"num_sample_generations": 10,
|
349 |
+
"response_length": 512,
|
350 |
+
"missing_eos_penalty": null,
|
351 |
+
"rlhf_type": "dpo",
|
352 |
+
"ref_model": null,
|
353 |
+
"ref_model_type": null,
|
354 |
+
"ref_model_revision": null,
|
355 |
+
"beta": 0.1,
|
356 |
+
"label_smoothing": 0,
|
357 |
+
"rpo_alpha": 1.0,
|
358 |
+
"cpo_alpha": 1.0,
|
359 |
+
"simpo_gamma": 1,
|
360 |
+
"desirable_weight": 1.0,
|
361 |
+
"undesirable_weight": 1.0,
|
362 |
+
"rank": 0,
|
363 |
+
"global_world_size": 2,
|
364 |
+
"local_world_size": 2,
|
365 |
+
"model_suffix": "deepseek-r1-1.5b",
|
366 |
+
"model_info": "ModelInfo(model_type='deepseek_r1_distill', model_dir='/home/wangruotong/LLM_test/Models/deepseek-r1-1.5b', torch_dtype=torch.bfloat16, max_model_len=131072, quant_method=None, quant_bits=None, config=None, task_type='causal_lm', num_labels=None)",
|
367 |
+
"model_meta": "ModelMeta(model_type='deepseek_r1_distill', model_groups=[ModelGroup(models=[Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-7B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-7B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-14B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-14B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-32B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-32B', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=['transformers>=4.37'], tags=[]), ModelGroup(models=[Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-8B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-8B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-70B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-70B', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='deepseek_r1', get_function=<function get_model_tokenizer_with_flash_attn at 0x7f8a0540c940>, model_arch='llama', architectures=['Qwen2ForCausalLM', 'LlamaForCausalLM'], additional_saved_files=[], torch_dtype=None, is_multimodal=False, is_reward=False, task_type=None, ignore_patterns=[], requires=[], tags=[])",
|
368 |
+
"model_dir": "/home/wangruotong/LLM_test/Models/deepseek-r1-1.5b",
|
369 |
+
"hub": "<class 'swift.hub.hub.MSHub'>",
|
370 |
+
"training_args": "DPOConfig(output_dir='/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=8, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=0.0001, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=5.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=20, save_total_limit=100, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=20, dataloader_num_workers=4, dataloader_prefetch_factor=None, past_index=-1, run_name='/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 3, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'offload_param': {'device': 'none', 'pin_memory': True}, 'overlap_comm': True, 'contiguous_gradients': True, 'sub_group_size': 1000000000.0, 'reduce_bucket_size': 'auto', 'stage3_prefetch_bucket_size': 'auto', 'stage3_param_persistence_threshold': 'auto', 'stage3_max_live_parameters': 1000000000.0, 'stage3_max_reuse_distance': 1000000000.0, 'stage3_gather_16bit_weights_on_model_save': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', evaluation_strategy='steps', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, dispatch_batches=None, split_batches=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=False, eval_use_gather_object=False, average_tokens_across_devices=None, beta=0.1, label_smoothing=0, loss_type='sigmoid', label_pad_token_id=None, padding_value=None, truncation_mode='keep_end', max_length=8192, max_prompt_length=None, max_target_length=None, max_completion_length=None, is_encoder_decoder=False, disable_dropout=True, generate_during_eval=False, precompute_ref_log_probs=False, dataset_num_proc=4, model_init_kwargs=None, ref_model_init_kwargs=None, model_adapter_name=None, ref_adapter_name=None, reference_free=False, force_use_ref_model=False, f_divergence_type=<FDivergenceType.REVERSE_KL: 'reverse_kl'>, f_alpha_divergence_coef=1.0, sync_ref_model=False, ref_model_mixup_alpha=0.9, ref_model_sync_steps=64, rpo_alpha=1.0, acc_strategy='token', sequence_parallel_size=1, check_model=True, train_sampler_random=True, metric_warmup_step=0, train_dataset_sample=-1, fsdp_num=1, acc_steps=1, train_type='lora', optimizer=None, galore_config=None)"
|
371 |
+
}
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/global_step122/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:694ced13812778e6fc64fe42fa77fa19b969eed345458b6493ace1de30583356
|
3 |
+
size 55398320
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/global_step122/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9a4d8eaa22c58e5ee5cd58da5a02de8d342fe35ddc67b92714c7d46a1d27907
|
3 |
+
size 55398320
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/global_step122/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f50fc238799cb875ba398f5645372c169d3d5a781b4b52e2b6d28c15ca91043
|
3 |
+
size 388374
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/global_step122/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b692f2e44a761349843c093c6e0f9a39386a746f0716c83b76c53131568bd73
|
3 |
+
size 388374
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step122
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5aeb0c54903210b6bb77aabf8f4802e4126d4bae40ff815b9d0b63767286cff
|
3 |
+
size 14512
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2087fa1159897fc8e7870700fdb75275c4b88dbf7d3cd02c5397018e197c58f1
|
3 |
+
size 14512
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ede1043a0735266b510faa06f578fa6ef180c11e994a142a88a13ac6f33eb78b
|
3 |
+
size 1064
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/trainer_state.json
ADDED
@@ -0,0 +1,585 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.62011719,
|
3 |
+
"best_model_checkpoint": "/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120",
|
4 |
+
"epoch": 4.96969696969697,
|
5 |
+
"eval_steps": 20,
|
6 |
+
"global_step": 120,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.04040404040404041,
|
13 |
+
"grad_norm": 1.24702048103415,
|
14 |
+
"learning_rate": 1.6666666666666667e-05,
|
15 |
+
"logits/chosen": -0.51953125,
|
16 |
+
"logits/rejected": -0.140625,
|
17 |
+
"logps/chosen": -552.0,
|
18 |
+
"logps/rejected": -1064.0,
|
19 |
+
"loss": 1.94580078125,
|
20 |
+
"memory(GiB)": 25.69,
|
21 |
+
"nll_loss": 1.5703125,
|
22 |
+
"rewards/accuracies": 0.0,
|
23 |
+
"rewards/chosen": 0.0,
|
24 |
+
"rewards/margins": 0.0,
|
25 |
+
"rewards/rejected": 0.0,
|
26 |
+
"step": 1,
|
27 |
+
"train_speed(iter/s)": 0.027363
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.20202020202020202,
|
31 |
+
"grad_norm": 1.5074727724564423,
|
32 |
+
"learning_rate": 8.333333333333334e-05,
|
33 |
+
"logits/chosen": -0.458984375,
|
34 |
+
"logits/rejected": 0.033935546875,
|
35 |
+
"logps/chosen": -712.0,
|
36 |
+
"logps/rejected": -708.0,
|
37 |
+
"loss": 2.4593505859375,
|
38 |
+
"memory(GiB)": 25.7,
|
39 |
+
"nll_loss": 1.515625,
|
40 |
+
"rewards/accuracies": 0.1875,
|
41 |
+
"rewards/chosen": 0.0234375,
|
42 |
+
"rewards/margins": -0.042236328125,
|
43 |
+
"rewards/rejected": 0.06591796875,
|
44 |
+
"step": 5,
|
45 |
+
"train_speed(iter/s)": 0.039476
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.40404040404040403,
|
49 |
+
"grad_norm": 0.9228133591717713,
|
50 |
+
"learning_rate": 9.969653386589748e-05,
|
51 |
+
"logits/chosen": -0.185546875,
|
52 |
+
"logits/rejected": -0.034912109375,
|
53 |
+
"logps/chosen": -636.0,
|
54 |
+
"logps/rejected": -600.0,
|
55 |
+
"loss": 1.776171875,
|
56 |
+
"memory(GiB)": 25.7,
|
57 |
+
"nll_loss": 1.1171875,
|
58 |
+
"rewards/accuracies": 0.75,
|
59 |
+
"rewards/chosen": 0.66796875,
|
60 |
+
"rewards/margins": 0.63671875,
|
61 |
+
"rewards/rejected": 0.03369140625,
|
62 |
+
"step": 10,
|
63 |
+
"train_speed(iter/s)": 0.042464
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.6060606060606061,
|
67 |
+
"grad_norm": 0.7395575770882112,
|
68 |
+
"learning_rate": 9.847001329696653e-05,
|
69 |
+
"logits/chosen": -0.51171875,
|
70 |
+
"logits/rejected": -0.07568359375,
|
71 |
+
"logps/chosen": -652.0,
|
72 |
+
"logps/rejected": -668.0,
|
73 |
+
"loss": 1.723095703125,
|
74 |
+
"memory(GiB)": 25.7,
|
75 |
+
"nll_loss": 1.4140625,
|
76 |
+
"rewards/accuracies": 0.949999988079071,
|
77 |
+
"rewards/chosen": 2.609375,
|
78 |
+
"rewards/margins": 2.203125,
|
79 |
+
"rewards/rejected": 0.408203125,
|
80 |
+
"step": 15,
|
81 |
+
"train_speed(iter/s)": 0.043941
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.8080808080808081,
|
85 |
+
"grad_norm": 0.26101957851244034,
|
86 |
+
"learning_rate": 9.632470336074009e-05,
|
87 |
+
"logits/chosen": -0.72265625,
|
88 |
+
"logits/rejected": -0.06982421875,
|
89 |
+
"logps/chosen": -418.0,
|
90 |
+
"logps/rejected": -596.0,
|
91 |
+
"loss": 1.1149658203125,
|
92 |
+
"memory(GiB)": 25.7,
|
93 |
+
"nll_loss": 1.078125,
|
94 |
+
"rewards/accuracies": 1.0,
|
95 |
+
"rewards/chosen": 5.6875,
|
96 |
+
"rewards/margins": 3.328125,
|
97 |
+
"rewards/rejected": 2.359375,
|
98 |
+
"step": 20,
|
99 |
+
"train_speed(iter/s)": 0.04473
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.8080808080808081,
|
103 |
+
"eval_logits/chosen": -0.453125,
|
104 |
+
"eval_logits/rejected": -1.0234375,
|
105 |
+
"eval_logps/chosen": -1224.0,
|
106 |
+
"eval_logps/rejected": -362.0,
|
107 |
+
"eval_loss": 0.78369140625,
|
108 |
+
"eval_nll_loss": 0.9921875,
|
109 |
+
"eval_rewards/accuracies": 1.0,
|
110 |
+
"eval_rewards/chosen": 6.46875,
|
111 |
+
"eval_rewards/margins": 3.40625,
|
112 |
+
"eval_rewards/rejected": 3.0625,
|
113 |
+
"eval_runtime": 2.4718,
|
114 |
+
"eval_samples_per_second": 1.618,
|
115 |
+
"eval_steps_per_second": 0.809,
|
116 |
+
"step": 20
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 1.0404040404040404,
|
120 |
+
"grad_norm": 0.14339630587567886,
|
121 |
+
"learning_rate": 9.330127018922194e-05,
|
122 |
+
"logits/chosen": -0.296875,
|
123 |
+
"logits/rejected": 0.06689453125,
|
124 |
+
"logps/chosen": -552.0,
|
125 |
+
"logps/rejected": -600.0,
|
126 |
+
"loss": 0.9431640625,
|
127 |
+
"memory(GiB)": 25.7,
|
128 |
+
"nll_loss": 0.87890625,
|
129 |
+
"rewards/accuracies": 0.9545454382896423,
|
130 |
+
"rewards/chosen": 7.65625,
|
131 |
+
"rewards/margins": 5.5,
|
132 |
+
"rewards/rejected": 2.15625,
|
133 |
+
"step": 25,
|
134 |
+
"train_speed(iter/s)": 0.044105
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 1.2424242424242424,
|
138 |
+
"grad_norm": 0.10599759576627858,
|
139 |
+
"learning_rate": 8.945702546981969e-05,
|
140 |
+
"logits/chosen": -0.390625,
|
141 |
+
"logits/rejected": -0.119140625,
|
142 |
+
"logps/chosen": -544.0,
|
143 |
+
"logps/rejected": -632.0,
|
144 |
+
"loss": 0.8330078125,
|
145 |
+
"memory(GiB)": 25.7,
|
146 |
+
"nll_loss": 0.87890625,
|
147 |
+
"rewards/accuracies": 1.0,
|
148 |
+
"rewards/chosen": 8.875,
|
149 |
+
"rewards/margins": 7.8125,
|
150 |
+
"rewards/rejected": 1.03125,
|
151 |
+
"step": 30,
|
152 |
+
"train_speed(iter/s)": 0.044482
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 1.4444444444444444,
|
156 |
+
"grad_norm": 0.08272331943435543,
|
157 |
+
"learning_rate": 8.486484005469977e-05,
|
158 |
+
"logits/chosen": -0.462890625,
|
159 |
+
"logits/rejected": -0.1259765625,
|
160 |
+
"logps/chosen": -572.0,
|
161 |
+
"logps/rejected": -524.0,
|
162 |
+
"loss": 0.817724609375,
|
163 |
+
"memory(GiB)": 25.7,
|
164 |
+
"nll_loss": 0.82421875,
|
165 |
+
"rewards/accuracies": 1.0,
|
166 |
+
"rewards/chosen": 9.75,
|
167 |
+
"rewards/margins": 8.875,
|
168 |
+
"rewards/rejected": 0.81640625,
|
169 |
+
"step": 35,
|
170 |
+
"train_speed(iter/s)": 0.044712
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 1.6464646464646466,
|
174 |
+
"grad_norm": 0.0696400325437939,
|
175 |
+
"learning_rate": 7.961176263324901e-05,
|
176 |
+
"logits/chosen": -0.15234375,
|
177 |
+
"logits/rejected": 0.044189453125,
|
178 |
+
"logps/chosen": -564.0,
|
179 |
+
"logps/rejected": -656.0,
|
180 |
+
"loss": 0.7612060546875,
|
181 |
+
"memory(GiB)": 25.7,
|
182 |
+
"nll_loss": 0.8046875,
|
183 |
+
"rewards/accuracies": 1.0,
|
184 |
+
"rewards/chosen": 9.8125,
|
185 |
+
"rewards/margins": 8.3125,
|
186 |
+
"rewards/rejected": 1.4921875,
|
187 |
+
"step": 40,
|
188 |
+
"train_speed(iter/s)": 0.045037
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 1.6464646464646466,
|
192 |
+
"eval_logits/chosen": -0.4296875,
|
193 |
+
"eval_logits/rejected": -1.0390625,
|
194 |
+
"eval_logps/chosen": -1200.0,
|
195 |
+
"eval_logps/rejected": -362.0,
|
196 |
+
"eval_loss": 0.65625,
|
197 |
+
"eval_nll_loss": 0.82421875,
|
198 |
+
"eval_rewards/accuracies": 1.0,
|
199 |
+
"eval_rewards/chosen": 9.25,
|
200 |
+
"eval_rewards/margins": 6.0625,
|
201 |
+
"eval_rewards/rejected": 3.15625,
|
202 |
+
"eval_runtime": 2.5963,
|
203 |
+
"eval_samples_per_second": 1.541,
|
204 |
+
"eval_steps_per_second": 0.77,
|
205 |
+
"step": 40
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 1.8484848484848486,
|
209 |
+
"grad_norm": 0.07254373381418182,
|
210 |
+
"learning_rate": 7.379736965185368e-05,
|
211 |
+
"logits/chosen": -0.474609375,
|
212 |
+
"logits/rejected": 0.1015625,
|
213 |
+
"logps/chosen": -430.0,
|
214 |
+
"logps/rejected": -684.0,
|
215 |
+
"loss": 0.793756103515625,
|
216 |
+
"memory(GiB)": 25.7,
|
217 |
+
"nll_loss": 0.828125,
|
218 |
+
"rewards/accuracies": 1.0,
|
219 |
+
"rewards/chosen": 10.0,
|
220 |
+
"rewards/margins": 7.4375,
|
221 |
+
"rewards/rejected": 2.5625,
|
222 |
+
"step": 45,
|
223 |
+
"train_speed(iter/s)": 0.045165
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"epoch": 2.080808080808081,
|
227 |
+
"grad_norm": 0.09461146468300914,
|
228 |
+
"learning_rate": 6.753187775963773e-05,
|
229 |
+
"logits/chosen": -0.263671875,
|
230 |
+
"logits/rejected": 0.1494140625,
|
231 |
+
"logps/chosen": -442.0,
|
232 |
+
"logps/rejected": -572.0,
|
233 |
+
"loss": 0.829718017578125,
|
234 |
+
"memory(GiB)": 25.7,
|
235 |
+
"nll_loss": 0.7421875,
|
236 |
+
"rewards/accuracies": 1.0,
|
237 |
+
"rewards/chosen": 10.875,
|
238 |
+
"rewards/margins": 8.5,
|
239 |
+
"rewards/rejected": 2.40625,
|
240 |
+
"step": 50,
|
241 |
+
"train_speed(iter/s)": 0.044966
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.282828282828283,
|
245 |
+
"grad_norm": 0.04766707435910784,
|
246 |
+
"learning_rate": 6.09340545603188e-05,
|
247 |
+
"logits/chosen": -0.058349609375,
|
248 |
+
"logits/rejected": -0.01220703125,
|
249 |
+
"logps/chosen": -464.0,
|
250 |
+
"logps/rejected": -496.0,
|
251 |
+
"loss": 0.75626220703125,
|
252 |
+
"memory(GiB)": 25.7,
|
253 |
+
"nll_loss": 0.75390625,
|
254 |
+
"rewards/accuracies": 1.0,
|
255 |
+
"rewards/chosen": 11.3125,
|
256 |
+
"rewards/margins": 8.6875,
|
257 |
+
"rewards/rejected": 2.65625,
|
258 |
+
"step": 55,
|
259 |
+
"train_speed(iter/s)": 0.045216
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"epoch": 2.484848484848485,
|
263 |
+
"grad_norm": 0.06131605999351018,
|
264 |
+
"learning_rate": 5.4128967273616625e-05,
|
265 |
+
"logits/chosen": -0.125,
|
266 |
+
"logits/rejected": 0.052490234375,
|
267 |
+
"logps/chosen": -500.0,
|
268 |
+
"logps/rejected": -504.0,
|
269 |
+
"loss": 0.786712646484375,
|
270 |
+
"memory(GiB)": 25.7,
|
271 |
+
"nll_loss": 0.72265625,
|
272 |
+
"rewards/accuracies": 1.0,
|
273 |
+
"rewards/chosen": 11.875,
|
274 |
+
"rewards/margins": 8.9375,
|
275 |
+
"rewards/rejected": 2.953125,
|
276 |
+
"step": 60,
|
277 |
+
"train_speed(iter/s)": 0.0454
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 2.484848484848485,
|
281 |
+
"eval_logits/chosen": -0.30859375,
|
282 |
+
"eval_logits/rejected": -1.0,
|
283 |
+
"eval_logps/chosen": -1176.0,
|
284 |
+
"eval_logps/rejected": -350.0,
|
285 |
+
"eval_loss": 0.634765625,
|
286 |
+
"eval_nll_loss": 0.81640625,
|
287 |
+
"eval_rewards/accuracies": 1.0,
|
288 |
+
"eval_rewards/chosen": 11.625,
|
289 |
+
"eval_rewards/margins": 7.28125,
|
290 |
+
"eval_rewards/rejected": 4.3125,
|
291 |
+
"eval_runtime": 2.5509,
|
292 |
+
"eval_samples_per_second": 1.568,
|
293 |
+
"eval_steps_per_second": 0.784,
|
294 |
+
"step": 60
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.686868686868687,
|
298 |
+
"grad_norm": 0.06676936632421913,
|
299 |
+
"learning_rate": 4.7245611982206724e-05,
|
300 |
+
"logits/chosen": -0.38671875,
|
301 |
+
"logits/rejected": -0.025146484375,
|
302 |
+
"logps/chosen": -560.0,
|
303 |
+
"logps/rejected": -676.0,
|
304 |
+
"loss": 0.79617919921875,
|
305 |
+
"memory(GiB)": 25.7,
|
306 |
+
"nll_loss": 0.7578125,
|
307 |
+
"rewards/accuracies": 1.0,
|
308 |
+
"rewards/chosen": 11.3125,
|
309 |
+
"rewards/margins": 8.0625,
|
310 |
+
"rewards/rejected": 3.234375,
|
311 |
+
"step": 65,
|
312 |
+
"train_speed(iter/s)": 0.045398
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 2.888888888888889,
|
316 |
+
"grad_norm": 0.05652873146800221,
|
317 |
+
"learning_rate": 4.0414468403813095e-05,
|
318 |
+
"logits/chosen": -0.36328125,
|
319 |
+
"logits/rejected": 0.306640625,
|
320 |
+
"logps/chosen": -360.0,
|
321 |
+
"logps/rejected": -644.0,
|
322 |
+
"loss": 0.68297119140625,
|
323 |
+
"memory(GiB)": 25.7,
|
324 |
+
"nll_loss": 0.66015625,
|
325 |
+
"rewards/accuracies": 1.0,
|
326 |
+
"rewards/chosen": 11.5,
|
327 |
+
"rewards/margins": 8.375,
|
328 |
+
"rewards/rejected": 3.09375,
|
329 |
+
"step": 70,
|
330 |
+
"train_speed(iter/s)": 0.04555
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"epoch": 3.121212121212121,
|
334 |
+
"grad_norm": 0.06536273458529179,
|
335 |
+
"learning_rate": 3.3765026539765834e-05,
|
336 |
+
"logits/chosen": -0.1416015625,
|
337 |
+
"logits/rejected": 0.011962890625,
|
338 |
+
"logps/chosen": -536.0,
|
339 |
+
"logps/rejected": -556.0,
|
340 |
+
"loss": 0.849755859375,
|
341 |
+
"memory(GiB)": 25.7,
|
342 |
+
"nll_loss": 0.703125,
|
343 |
+
"rewards/accuracies": 1.0,
|
344 |
+
"rewards/chosen": 11.9375,
|
345 |
+
"rewards/margins": 8.9375,
|
346 |
+
"rewards/rejected": 3.015625,
|
347 |
+
"step": 75,
|
348 |
+
"train_speed(iter/s)": 0.045382
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 3.323232323232323,
|
352 |
+
"grad_norm": 0.04825974409413595,
|
353 |
+
"learning_rate": 2.7423332084455544e-05,
|
354 |
+
"logits/chosen": -0.1064453125,
|
355 |
+
"logits/rejected": -0.043701171875,
|
356 |
+
"logps/chosen": -502.0,
|
357 |
+
"logps/rejected": -458.0,
|
358 |
+
"loss": 0.706292724609375,
|
359 |
+
"memory(GiB)": 25.7,
|
360 |
+
"nll_loss": 0.69921875,
|
361 |
+
"rewards/accuracies": 1.0,
|
362 |
+
"rewards/chosen": 12.0625,
|
363 |
+
"rewards/margins": 8.9375,
|
364 |
+
"rewards/rejected": 3.15625,
|
365 |
+
"step": 80,
|
366 |
+
"train_speed(iter/s)": 0.045536
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 3.323232323232323,
|
370 |
+
"eval_logits/chosen": -0.2421875,
|
371 |
+
"eval_logits/rejected": -0.9765625,
|
372 |
+
"eval_logps/chosen": -1168.0,
|
373 |
+
"eval_logps/rejected": -348.0,
|
374 |
+
"eval_loss": 0.6259765625,
|
375 |
+
"eval_nll_loss": 0.80859375,
|
376 |
+
"eval_rewards/accuracies": 1.0,
|
377 |
+
"eval_rewards/chosen": 12.375,
|
378 |
+
"eval_rewards/margins": 7.875,
|
379 |
+
"eval_rewards/rejected": 4.5,
|
380 |
+
"eval_runtime": 2.4567,
|
381 |
+
"eval_samples_per_second": 1.628,
|
382 |
+
"eval_steps_per_second": 0.814,
|
383 |
+
"step": 80
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 3.525252525252525,
|
387 |
+
"grad_norm": 0.056385847668733294,
|
388 |
+
"learning_rate": 2.150959712448669e-05,
|
389 |
+
"logits/chosen": -0.2392578125,
|
390 |
+
"logits/rejected": 0.15625,
|
391 |
+
"logps/chosen": -604.0,
|
392 |
+
"logps/rejected": -616.0,
|
393 |
+
"loss": 0.7456787109375,
|
394 |
+
"memory(GiB)": 25.7,
|
395 |
+
"nll_loss": 0.8046875,
|
396 |
+
"rewards/accuracies": 1.0,
|
397 |
+
"rewards/chosen": 12.6875,
|
398 |
+
"rewards/margins": 9.8125,
|
399 |
+
"rewards/rejected": 2.84375,
|
400 |
+
"step": 85,
|
401 |
+
"train_speed(iter/s)": 0.045586
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 3.7272727272727275,
|
405 |
+
"grad_norm": 0.05524440051382823,
|
406 |
+
"learning_rate": 1.6135921418712956e-05,
|
407 |
+
"logits/chosen": -0.294921875,
|
408 |
+
"logits/rejected": 0.1328125,
|
409 |
+
"logps/chosen": -432.0,
|
410 |
+
"logps/rejected": -588.0,
|
411 |
+
"loss": 0.671728515625,
|
412 |
+
"memory(GiB)": 25.7,
|
413 |
+
"nll_loss": 0.6484375,
|
414 |
+
"rewards/accuracies": 1.0,
|
415 |
+
"rewards/chosen": 11.75,
|
416 |
+
"rewards/margins": 8.9375,
|
417 |
+
"rewards/rejected": 2.859375,
|
418 |
+
"step": 90,
|
419 |
+
"train_speed(iter/s)": 0.045721
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 3.929292929292929,
|
423 |
+
"grad_norm": 0.05977092210820939,
|
424 |
+
"learning_rate": 1.1404167454183957e-05,
|
425 |
+
"logits/chosen": -0.361328125,
|
426 |
+
"logits/rejected": 0.185546875,
|
427 |
+
"logps/chosen": -366.0,
|
428 |
+
"logps/rejected": -648.0,
|
429 |
+
"loss": 0.734991455078125,
|
430 |
+
"memory(GiB)": 25.7,
|
431 |
+
"nll_loss": 0.69921875,
|
432 |
+
"rewards/accuracies": 1.0,
|
433 |
+
"rewards/chosen": 11.5625,
|
434 |
+
"rewards/margins": 9.0,
|
435 |
+
"rewards/rejected": 2.5625,
|
436 |
+
"step": 95,
|
437 |
+
"train_speed(iter/s)": 0.045829
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 4.161616161616162,
|
441 |
+
"grad_norm": 0.06596771804969032,
|
442 |
+
"learning_rate": 7.404029558083653e-06,
|
443 |
+
"logits/chosen": -0.427734375,
|
444 |
+
"logits/rejected": 0.251953125,
|
445 |
+
"logps/chosen": -366.0,
|
446 |
+
"logps/rejected": -620.0,
|
447 |
+
"loss": 0.818841552734375,
|
448 |
+
"memory(GiB)": 25.7,
|
449 |
+
"nll_loss": 0.65234375,
|
450 |
+
"rewards/accuracies": 1.0,
|
451 |
+
"rewards/chosen": 11.6875,
|
452 |
+
"rewards/margins": 8.4375,
|
453 |
+
"rewards/rejected": 3.234375,
|
454 |
+
"step": 100,
|
455 |
+
"train_speed(iter/s)": 0.045708
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 4.161616161616162,
|
459 |
+
"eval_logits/chosen": -0.21875,
|
460 |
+
"eval_logits/rejected": -0.9609375,
|
461 |
+
"eval_logps/chosen": -1160.0,
|
462 |
+
"eval_logps/rejected": -348.0,
|
463 |
+
"eval_loss": 0.6220703125,
|
464 |
+
"eval_nll_loss": 0.8046875,
|
465 |
+
"eval_rewards/accuracies": 1.0,
|
466 |
+
"eval_rewards/chosen": 13.25,
|
467 |
+
"eval_rewards/margins": 8.8125,
|
468 |
+
"eval_rewards/rejected": 4.40625,
|
469 |
+
"eval_runtime": 2.2433,
|
470 |
+
"eval_samples_per_second": 1.783,
|
471 |
+
"eval_steps_per_second": 0.892,
|
472 |
+
"step": 100
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 4.363636363636363,
|
476 |
+
"grad_norm": 0.06608692576727743,
|
477 |
+
"learning_rate": 4.2113336672471245e-06,
|
478 |
+
"logits/chosen": -0.271484375,
|
479 |
+
"logits/rejected": 0.1005859375,
|
480 |
+
"logps/chosen": -420.0,
|
481 |
+
"logps/rejected": -552.0,
|
482 |
+
"loss": 0.71077880859375,
|
483 |
+
"memory(GiB)": 25.7,
|
484 |
+
"nll_loss": 0.671875,
|
485 |
+
"rewards/accuracies": 1.0,
|
486 |
+
"rewards/chosen": 12.3125,
|
487 |
+
"rewards/margins": 9.1875,
|
488 |
+
"rewards/rejected": 3.171875,
|
489 |
+
"step": 105,
|
490 |
+
"train_speed(iter/s)": 0.045758
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 4.565656565656566,
|
494 |
+
"grad_norm": 0.05632288765049835,
|
495 |
+
"learning_rate": 1.8865999845374793e-06,
|
496 |
+
"logits/chosen": -0.1962890625,
|
497 |
+
"logits/rejected": 0.1875,
|
498 |
+
"logps/chosen": -708.0,
|
499 |
+
"logps/rejected": -868.0,
|
500 |
+
"loss": 0.800726318359375,
|
501 |
+
"memory(GiB)": 25.7,
|
502 |
+
"nll_loss": 0.859375,
|
503 |
+
"rewards/accuracies": 1.0,
|
504 |
+
"rewards/chosen": 13.0,
|
505 |
+
"rewards/margins": 9.6875,
|
506 |
+
"rewards/rejected": 3.3125,
|
507 |
+
"step": 110,
|
508 |
+
"train_speed(iter/s)": 0.045887
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 4.767676767676767,
|
512 |
+
"grad_norm": 0.11870440122922361,
|
513 |
+
"learning_rate": 4.738957681248379e-07,
|
514 |
+
"logits/chosen": -0.1572265625,
|
515 |
+
"logits/rejected": -0.04638671875,
|
516 |
+
"logps/chosen": -584.0,
|
517 |
+
"logps/rejected": -592.0,
|
518 |
+
"loss": 0.803369140625,
|
519 |
+
"memory(GiB)": 25.7,
|
520 |
+
"nll_loss": 0.84375,
|
521 |
+
"rewards/accuracies": 1.0,
|
522 |
+
"rewards/chosen": 12.5,
|
523 |
+
"rewards/margins": 9.6875,
|
524 |
+
"rewards/rejected": 2.828125,
|
525 |
+
"step": 115,
|
526 |
+
"train_speed(iter/s)": 0.045978
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.96969696969697,
|
530 |
+
"grad_norm": 0.07102631187789318,
|
531 |
+
"learning_rate": 0.0,
|
532 |
+
"logits/chosen": -0.07666015625,
|
533 |
+
"logits/rejected": 0.1484375,
|
534 |
+
"logps/chosen": -568.0,
|
535 |
+
"logps/rejected": -716.0,
|
536 |
+
"loss": 0.649658203125,
|
537 |
+
"memory(GiB)": 25.7,
|
538 |
+
"nll_loss": 0.69921875,
|
539 |
+
"rewards/accuracies": 1.0,
|
540 |
+
"rewards/chosen": 13.375,
|
541 |
+
"rewards/margins": 10.5,
|
542 |
+
"rewards/rejected": 2.828125,
|
543 |
+
"step": 120,
|
544 |
+
"train_speed(iter/s)": 0.046069
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 4.96969696969697,
|
548 |
+
"eval_logits/chosen": -0.20703125,
|
549 |
+
"eval_logits/rejected": -0.953125,
|
550 |
+
"eval_logps/chosen": -1160.0,
|
551 |
+
"eval_logps/rejected": -348.0,
|
552 |
+
"eval_loss": 0.6201171875,
|
553 |
+
"eval_nll_loss": 0.80078125,
|
554 |
+
"eval_rewards/accuracies": 1.0,
|
555 |
+
"eval_rewards/chosen": 13.25,
|
556 |
+
"eval_rewards/margins": 8.625,
|
557 |
+
"eval_rewards/rejected": 4.59375,
|
558 |
+
"eval_runtime": 2.3336,
|
559 |
+
"eval_samples_per_second": 1.714,
|
560 |
+
"eval_steps_per_second": 0.857,
|
561 |
+
"step": 120
|
562 |
+
}
|
563 |
+
],
|
564 |
+
"logging_steps": 5,
|
565 |
+
"max_steps": 120,
|
566 |
+
"num_input_tokens_seen": 0,
|
567 |
+
"num_train_epochs": 5,
|
568 |
+
"save_steps": 20,
|
569 |
+
"stateful_callbacks": {
|
570 |
+
"TrainerControl": {
|
571 |
+
"args": {
|
572 |
+
"should_epoch_stop": false,
|
573 |
+
"should_evaluate": false,
|
574 |
+
"should_log": false,
|
575 |
+
"should_save": true,
|
576 |
+
"should_training_stop": true
|
577 |
+
},
|
578 |
+
"attributes": {}
|
579 |
+
}
|
580 |
+
},
|
581 |
+
"total_flos": 11267474751488.0,
|
582 |
+
"train_batch_size": 1,
|
583 |
+
"trial_name": null,
|
584 |
+
"trial_params": null
|
585 |
+
}
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c9971bed8fc8c96e32aeec854c7366dccfed250f1c481c02a2a99548410dab4
|
3 |
+
size 8888
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-120/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /home/wangruotong/LLM_test/Models/deepseek-r1-1.5b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/adapter_config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/home/wangruotong/LLM_test/Models/deepseek-r1-1.5b",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 32,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.05,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": [],
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 8,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"q_proj",
|
27 |
+
"o_proj",
|
28 |
+
"up_proj",
|
29 |
+
"k_proj",
|
30 |
+
"down_proj",
|
31 |
+
"gate_proj",
|
32 |
+
"v_proj"
|
33 |
+
],
|
34 |
+
"task_type": "CAUSAL_LM",
|
35 |
+
"use_dora": false,
|
36 |
+
"use_rslora": false
|
37 |
+
}
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe56c02239710558a5aa6334d219b5c38c01ad9b80a15c93c31be50e423c19f2
|
3 |
+
size 18516456
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/additional_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"lora_dtype": null, "lorap_lr_ratio": null, "lorap_emb_lr": 1e-06}
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/args.json
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "/home/wangruotong/LLM_test/Models/deepseek-r1-1.5b",
|
3 |
+
"model_type": "deepseek_r1_distill",
|
4 |
+
"model_revision": null,
|
5 |
+
"task_type": "causal_lm",
|
6 |
+
"torch_dtype": "bfloat16",
|
7 |
+
"attn_impl": null,
|
8 |
+
"num_labels": null,
|
9 |
+
"rope_scaling": null,
|
10 |
+
"device_map": null,
|
11 |
+
"local_repo_path": null,
|
12 |
+
"template": "deepseek_r1",
|
13 |
+
"system": null,
|
14 |
+
"max_length": 8192,
|
15 |
+
"truncation_strategy": "delete",
|
16 |
+
"max_pixels": null,
|
17 |
+
"tools_prompt": "react_en",
|
18 |
+
"padding_side": "right",
|
19 |
+
"loss_scale": "last_round",
|
20 |
+
"sequence_parallel_size": 1,
|
21 |
+
"use_chat_template": true,
|
22 |
+
"template_backend": "swift",
|
23 |
+
"dataset": [
|
24 |
+
"/home/wangruotong/LLM_test/data/train_400_dpo_0.5_random20.jsonl"
|
25 |
+
],
|
26 |
+
"val_dataset": [],
|
27 |
+
"split_dataset_ratio": 0.01,
|
28 |
+
"data_seed": 42,
|
29 |
+
"dataset_num_proc": 4,
|
30 |
+
"streaming": false,
|
31 |
+
"enable_cache": false,
|
32 |
+
"download_mode": "reuse_dataset_if_exists",
|
33 |
+
"strict": false,
|
34 |
+
"model_name": [
|
35 |
+
null,
|
36 |
+
null
|
37 |
+
],
|
38 |
+
"model_author": [
|
39 |
+
null,
|
40 |
+
null
|
41 |
+
],
|
42 |
+
"custom_dataset_info": [],
|
43 |
+
"quant_method": null,
|
44 |
+
"quant_bits": null,
|
45 |
+
"hqq_axis": null,
|
46 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
47 |
+
"bnb_4bit_quant_type": "nf4",
|
48 |
+
"bnb_4bit_use_double_quant": true,
|
49 |
+
"bnb_4bit_quant_storage": null,
|
50 |
+
"max_new_tokens": 64,
|
51 |
+
"temperature": 0.7,
|
52 |
+
"top_k": null,
|
53 |
+
"top_p": null,
|
54 |
+
"repetition_penalty": null,
|
55 |
+
"num_beams": 1,
|
56 |
+
"stream": false,
|
57 |
+
"stop_words": [],
|
58 |
+
"logprobs": false,
|
59 |
+
"top_logprobs": null,
|
60 |
+
"ckpt_dir": null,
|
61 |
+
"load_dataset_config": null,
|
62 |
+
"lora_modules": [],
|
63 |
+
"tuner_backend": "peft",
|
64 |
+
"train_type": "lora",
|
65 |
+
"adapters": [],
|
66 |
+
"seed": 42,
|
67 |
+
"model_kwargs": {},
|
68 |
+
"load_args": true,
|
69 |
+
"load_data_args": false,
|
70 |
+
"use_hf": false,
|
71 |
+
"hub_token": null,
|
72 |
+
"custom_register_path": [],
|
73 |
+
"ignore_args_error": false,
|
74 |
+
"use_swift_lora": false,
|
75 |
+
"output_dir": "/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757",
|
76 |
+
"overwrite_output_dir": false,
|
77 |
+
"do_train": false,
|
78 |
+
"do_eval": false,
|
79 |
+
"do_predict": false,
|
80 |
+
"eval_strategy": "steps",
|
81 |
+
"prediction_loss_only": false,
|
82 |
+
"per_device_train_batch_size": 1,
|
83 |
+
"per_device_eval_batch_size": 1,
|
84 |
+
"per_gpu_train_batch_size": null,
|
85 |
+
"per_gpu_eval_batch_size": null,
|
86 |
+
"gradient_accumulation_steps": 8,
|
87 |
+
"eval_accumulation_steps": null,
|
88 |
+
"eval_delay": 0,
|
89 |
+
"torch_empty_cache_steps": null,
|
90 |
+
"learning_rate": 0.0001,
|
91 |
+
"weight_decay": 0.1,
|
92 |
+
"adam_beta1": 0.9,
|
93 |
+
"adam_beta2": 0.999,
|
94 |
+
"adam_epsilon": 1e-08,
|
95 |
+
"max_grad_norm": 1.0,
|
96 |
+
"num_train_epochs": 5.0,
|
97 |
+
"max_steps": -1,
|
98 |
+
"lr_scheduler_type": "cosine",
|
99 |
+
"lr_scheduler_kwargs": null,
|
100 |
+
"warmup_ratio": 0.05,
|
101 |
+
"warmup_steps": 0,
|
102 |
+
"log_level": "passive",
|
103 |
+
"log_level_replica": "warning",
|
104 |
+
"log_on_each_node": true,
|
105 |
+
"logging_dir": "/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/runs",
|
106 |
+
"logging_strategy": "steps",
|
107 |
+
"logging_first_step": true,
|
108 |
+
"logging_steps": 5,
|
109 |
+
"logging_nan_inf_filter": true,
|
110 |
+
"save_strategy": "steps",
|
111 |
+
"save_steps": 20.0,
|
112 |
+
"save_total_limit": 100,
|
113 |
+
"save_safetensors": true,
|
114 |
+
"save_on_each_node": false,
|
115 |
+
"save_only_model": false,
|
116 |
+
"restore_callback_states_from_checkpoint": false,
|
117 |
+
"no_cuda": false,
|
118 |
+
"use_cpu": false,
|
119 |
+
"use_mps_device": false,
|
120 |
+
"jit_mode_eval": false,
|
121 |
+
"use_ipex": false,
|
122 |
+
"bf16": true,
|
123 |
+
"fp16": false,
|
124 |
+
"fp16_opt_level": "O1",
|
125 |
+
"half_precision_backend": "auto",
|
126 |
+
"bf16_full_eval": false,
|
127 |
+
"fp16_full_eval": false,
|
128 |
+
"tf32": null,
|
129 |
+
"local_rank": 0,
|
130 |
+
"ddp_backend": null,
|
131 |
+
"tpu_num_cores": null,
|
132 |
+
"tpu_metrics_debug": false,
|
133 |
+
"debug": null,
|
134 |
+
"dataloader_drop_last": false,
|
135 |
+
"eval_steps": 20.0,
|
136 |
+
"dataloader_num_workers": 4,
|
137 |
+
"dataloader_prefetch_factor": null,
|
138 |
+
"past_index": -1,
|
139 |
+
"run_name": null,
|
140 |
+
"disable_tqdm": null,
|
141 |
+
"remove_unused_columns": false,
|
142 |
+
"label_names": null,
|
143 |
+
"load_best_model_at_end": false,
|
144 |
+
"metric_for_best_model": "loss",
|
145 |
+
"greater_is_better": false,
|
146 |
+
"ignore_data_skip": false,
|
147 |
+
"fsdp": "",
|
148 |
+
"fsdp_min_num_params": 0,
|
149 |
+
"fsdp_config": null,
|
150 |
+
"fsdp_transformer_layer_cls_to_wrap": null,
|
151 |
+
"accelerator_config": {
|
152 |
+
"dispatch_batches": false
|
153 |
+
},
|
154 |
+
"deepspeed": {
|
155 |
+
"fp16": {
|
156 |
+
"enabled": "auto",
|
157 |
+
"loss_scale": 0,
|
158 |
+
"loss_scale_window": 1000,
|
159 |
+
"initial_scale_power": 16,
|
160 |
+
"hysteresis": 2,
|
161 |
+
"min_loss_scale": 1
|
162 |
+
},
|
163 |
+
"bf16": {
|
164 |
+
"enabled": "auto"
|
165 |
+
},
|
166 |
+
"zero_optimization": {
|
167 |
+
"stage": 3,
|
168 |
+
"offload_optimizer": {
|
169 |
+
"device": "none",
|
170 |
+
"pin_memory": true
|
171 |
+
},
|
172 |
+
"offload_param": {
|
173 |
+
"device": "none",
|
174 |
+
"pin_memory": true
|
175 |
+
},
|
176 |
+
"overlap_comm": true,
|
177 |
+
"contiguous_gradients": true,
|
178 |
+
"sub_group_size": 1000000000.0,
|
179 |
+
"reduce_bucket_size": "auto",
|
180 |
+
"stage3_prefetch_bucket_size": "auto",
|
181 |
+
"stage3_param_persistence_threshold": "auto",
|
182 |
+
"stage3_max_live_parameters": 1000000000.0,
|
183 |
+
"stage3_max_reuse_distance": 1000000000.0,
|
184 |
+
"stage3_gather_16bit_weights_on_model_save": true
|
185 |
+
},
|
186 |
+
"gradient_accumulation_steps": "auto",
|
187 |
+
"gradient_clipping": "auto",
|
188 |
+
"steps_per_print": 2000,
|
189 |
+
"train_batch_size": "auto",
|
190 |
+
"train_micro_batch_size_per_gpu": "auto",
|
191 |
+
"wall_clock_breakdown": false
|
192 |
+
},
|
193 |
+
"label_smoothing_factor": 0.0,
|
194 |
+
"optim": "adamw_torch",
|
195 |
+
"optim_args": null,
|
196 |
+
"adafactor": false,
|
197 |
+
"group_by_length": false,
|
198 |
+
"length_column_name": "length",
|
199 |
+
"report_to": [
|
200 |
+
"tensorboard"
|
201 |
+
],
|
202 |
+
"ddp_find_unused_parameters": null,
|
203 |
+
"ddp_bucket_cap_mb": null,
|
204 |
+
"ddp_broadcast_buffers": null,
|
205 |
+
"dataloader_pin_memory": true,
|
206 |
+
"dataloader_persistent_workers": false,
|
207 |
+
"skip_memory_metrics": true,
|
208 |
+
"use_legacy_prediction_loop": false,
|
209 |
+
"push_to_hub": false,
|
210 |
+
"resume_from_checkpoint": null,
|
211 |
+
"hub_model_id": null,
|
212 |
+
"hub_strategy": "every_save",
|
213 |
+
"hub_private_repo": null,
|
214 |
+
"hub_always_push": false,
|
215 |
+
"gradient_checkpointing": true,
|
216 |
+
"gradient_checkpointing_kwargs": null,
|
217 |
+
"include_inputs_for_metrics": false,
|
218 |
+
"include_for_metrics": [],
|
219 |
+
"eval_do_concat_batches": true,
|
220 |
+
"fp16_backend": "auto",
|
221 |
+
"evaluation_strategy": "steps",
|
222 |
+
"push_to_hub_model_id": null,
|
223 |
+
"push_to_hub_organization": null,
|
224 |
+
"push_to_hub_token": null,
|
225 |
+
"mp_parameters": "",
|
226 |
+
"auto_find_batch_size": false,
|
227 |
+
"full_determinism": false,
|
228 |
+
"torchdynamo": null,
|
229 |
+
"ray_scope": "last",
|
230 |
+
"ddp_timeout": 1800,
|
231 |
+
"torch_compile": false,
|
232 |
+
"torch_compile_backend": null,
|
233 |
+
"torch_compile_mode": null,
|
234 |
+
"dispatch_batches": null,
|
235 |
+
"split_batches": null,
|
236 |
+
"include_tokens_per_second": false,
|
237 |
+
"include_num_input_tokens_seen": false,
|
238 |
+
"neftune_noise_alpha": null,
|
239 |
+
"optim_target_modules": null,
|
240 |
+
"batch_eval_metrics": false,
|
241 |
+
"eval_on_start": false,
|
242 |
+
"use_liger_kernel": false,
|
243 |
+
"eval_use_gather_object": false,
|
244 |
+
"average_tokens_across_devices": false,
|
245 |
+
"sortish_sampler": false,
|
246 |
+
"predict_with_generate": false,
|
247 |
+
"generation_max_length": null,
|
248 |
+
"generation_num_beams": null,
|
249 |
+
"generation_config": null,
|
250 |
+
"freeze_parameters": [],
|
251 |
+
"freeze_parameters_ratio": 0.0,
|
252 |
+
"trainable_parameters": [],
|
253 |
+
"freeze_llm": false,
|
254 |
+
"freeze_vit": true,
|
255 |
+
"freeze_aligner": true,
|
256 |
+
"target_modules": [
|
257 |
+
"all-linear"
|
258 |
+
],
|
259 |
+
"target_regex": null,
|
260 |
+
"modules_to_save": [],
|
261 |
+
"lora_rank": 8,
|
262 |
+
"lora_alpha": 32,
|
263 |
+
"lora_dropout": 0.05,
|
264 |
+
"lora_bias": "none",
|
265 |
+
"lora_dtype": null,
|
266 |
+
"lorap_lr_ratio": null,
|
267 |
+
"use_rslora": false,
|
268 |
+
"use_dora": false,
|
269 |
+
"lora_ga_batch_size": 2,
|
270 |
+
"lora_ga_iters": 2,
|
271 |
+
"lora_ga_max_length": 1024,
|
272 |
+
"lora_ga_direction": "ArB2r",
|
273 |
+
"lora_ga_scale": "stable",
|
274 |
+
"lora_ga_stable_gamma": 16,
|
275 |
+
"init_weights": true,
|
276 |
+
"fourier_n_frequency": 2000,
|
277 |
+
"fourier_scaling": 300.0,
|
278 |
+
"boft_block_size": 4,
|
279 |
+
"boft_block_num": 0,
|
280 |
+
"boft_n_butterfly_factor": 1,
|
281 |
+
"boft_dropout": 0.0,
|
282 |
+
"vera_rank": 256,
|
283 |
+
"vera_projection_prng_key": 0,
|
284 |
+
"vera_dropout": 0.0,
|
285 |
+
"vera_d_initial": 0.1,
|
286 |
+
"adapter_act": "gelu",
|
287 |
+
"adapter_length": 128,
|
288 |
+
"use_galore": false,
|
289 |
+
"galore_target_modules": null,
|
290 |
+
"galore_rank": 128,
|
291 |
+
"galore_update_proj_gap": 50,
|
292 |
+
"galore_scale": 1.0,
|
293 |
+
"galore_proj_type": "std",
|
294 |
+
"galore_optim_per_parameter": false,
|
295 |
+
"galore_with_embedding": false,
|
296 |
+
"galore_quantization": false,
|
297 |
+
"galore_proj_quant": false,
|
298 |
+
"galore_proj_bits": 4,
|
299 |
+
"galore_proj_group_size": 256,
|
300 |
+
"galore_cos_threshold": 0.4,
|
301 |
+
"galore_gamma_proj": 2,
|
302 |
+
"galore_queue_size": 5,
|
303 |
+
"adalora_target_r": 8,
|
304 |
+
"adalora_init_r": 12,
|
305 |
+
"adalora_tinit": 0,
|
306 |
+
"adalora_tfinal": 0,
|
307 |
+
"adalora_deltaT": 1,
|
308 |
+
"adalora_beta1": 0.85,
|
309 |
+
"adalora_beta2": 0.85,
|
310 |
+
"adalora_orth_reg_weight": 0.5,
|
311 |
+
"llamapro_num_new_blocks": 4,
|
312 |
+
"llamapro_num_groups": null,
|
313 |
+
"lisa_activated_layers": 0,
|
314 |
+
"lisa_step_interval": 20,
|
315 |
+
"reft_layer_key": null,
|
316 |
+
"reft_layers": null,
|
317 |
+
"reft_rank": 4,
|
318 |
+
"reft_intervention_type": "LoreftIntervention",
|
319 |
+
"reft_args": null,
|
320 |
+
"use_liger": false,
|
321 |
+
"model_layer_cls_name": null,
|
322 |
+
"metric_warmup_step": 0,
|
323 |
+
"fsdp_num": 1,
|
324 |
+
"acc_steps": 1,
|
325 |
+
"add_version": true,
|
326 |
+
"resume_only_model": false,
|
327 |
+
"check_model": true,
|
328 |
+
"packing": false,
|
329 |
+
"lazy_tokenize": false,
|
330 |
+
"loss_type": "sigmoid",
|
331 |
+
"optimizer": null,
|
332 |
+
"metric": null,
|
333 |
+
"acc_strategy": "token",
|
334 |
+
"reward_model": null,
|
335 |
+
"reward_adapters": [],
|
336 |
+
"reward_model_type": null,
|
337 |
+
"reward_model_revision": null,
|
338 |
+
"num_ppo_epochs": 4,
|
339 |
+
"whiten_rewards": false,
|
340 |
+
"kl_coef": 0.05,
|
341 |
+
"cliprange": 0.2,
|
342 |
+
"vf_coef": 0.1,
|
343 |
+
"cliprange_value": 0.2,
|
344 |
+
"gamma": 1.0,
|
345 |
+
"lam": 0.95,
|
346 |
+
"num_mini_batches": 1,
|
347 |
+
"local_rollout_forward_batch_size": 64,
|
348 |
+
"num_sample_generations": 10,
|
349 |
+
"response_length": 512,
|
350 |
+
"missing_eos_penalty": null,
|
351 |
+
"rlhf_type": "dpo",
|
352 |
+
"ref_model": null,
|
353 |
+
"ref_model_type": null,
|
354 |
+
"ref_model_revision": null,
|
355 |
+
"beta": 0.1,
|
356 |
+
"label_smoothing": 0,
|
357 |
+
"rpo_alpha": 1.0,
|
358 |
+
"cpo_alpha": 1.0,
|
359 |
+
"simpo_gamma": 1,
|
360 |
+
"desirable_weight": 1.0,
|
361 |
+
"undesirable_weight": 1.0,
|
362 |
+
"rank": 0,
|
363 |
+
"global_world_size": 2,
|
364 |
+
"local_world_size": 2,
|
365 |
+
"model_suffix": "deepseek-r1-1.5b",
|
366 |
+
"model_info": "ModelInfo(model_type='deepseek_r1_distill', model_dir='/home/wangruotong/LLM_test/Models/deepseek-r1-1.5b', torch_dtype=torch.bfloat16, max_model_len=131072, quant_method=None, quant_bits=None, config=None, task_type='causal_lm', num_labels=None)",
|
367 |
+
"model_meta": "ModelMeta(model_type='deepseek_r1_distill', model_groups=[ModelGroup(models=[Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-7B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-7B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-14B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-14B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-32B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-32B', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=['transformers>=4.37'], tags=[]), ModelGroup(models=[Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-8B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-8B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-70B', hf_model_id='deepseek-ai/DeepSeek-R1-Distill-Llama-70B', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='deepseek_r1', get_function=<function get_model_tokenizer_with_flash_attn at 0x7f8a0540c940>, model_arch='llama', architectures=['Qwen2ForCausalLM', 'LlamaForCausalLM'], additional_saved_files=[], torch_dtype=None, is_multimodal=False, is_reward=False, task_type=None, ignore_patterns=[], requires=[], tags=[])",
|
368 |
+
"model_dir": "/home/wangruotong/LLM_test/Models/deepseek-r1-1.5b",
|
369 |
+
"hub": "<class 'swift.hub.hub.MSHub'>",
|
370 |
+
"training_args": "DPOConfig(output_dir='/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=8, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=0.0001, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=5.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=20, save_total_limit=100, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=20, dataloader_num_workers=4, dataloader_prefetch_factor=None, past_index=-1, run_name='/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 3, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'offload_param': {'device': 'none', 'pin_memory': True}, 'overlap_comm': True, 'contiguous_gradients': True, 'sub_group_size': 1000000000.0, 'reduce_bucket_size': 'auto', 'stage3_prefetch_bucket_size': 'auto', 'stage3_param_persistence_threshold': 'auto', 'stage3_max_live_parameters': 1000000000.0, 'stage3_max_reuse_distance': 1000000000.0, 'stage3_gather_16bit_weights_on_model_save': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', evaluation_strategy='steps', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, dispatch_batches=None, split_batches=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=False, eval_use_gather_object=False, average_tokens_across_devices=None, beta=0.1, label_smoothing=0, loss_type='sigmoid', label_pad_token_id=None, padding_value=None, truncation_mode='keep_end', max_length=8192, max_prompt_length=None, max_target_length=None, max_completion_length=None, is_encoder_decoder=False, disable_dropout=True, generate_during_eval=False, precompute_ref_log_probs=False, dataset_num_proc=4, model_init_kwargs=None, ref_model_init_kwargs=None, model_adapter_name=None, ref_adapter_name=None, reference_free=False, force_use_ref_model=False, f_divergence_type=<FDivergenceType.REVERSE_KL: 'reverse_kl'>, f_alpha_divergence_coef=1.0, sync_ref_model=False, ref_model_mixup_alpha=0.9, ref_model_sync_steps=64, rpo_alpha=1.0, acc_strategy='token', sequence_parallel_size=1, check_model=True, train_sampler_random=True, metric_warmup_step=0, train_dataset_sample=-1, fsdp_num=1, acc_steps=1, train_type='lora', optimizer=None, galore_config=None)"
|
371 |
+
}
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/global_step20/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c7a99a2d3ec435644f8bbeddad15dd160da1ad74fe5337dd9f367fcbb0f4cdc
|
3 |
+
size 55398320
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/global_step20/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4296052a3d8f89d419363542b6d153491e575d64156d1a47cb1139ecf1ef53be
|
3 |
+
size 55398320
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/global_step20/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef80b66cb9665fda10e1c287bf309068c067530e8e93159875f043b452f62af6
|
3 |
+
size 388374
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/global_step20/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2921198144698255700f0b59dce87792be511022eedd048e89f00c98ab60799d
|
3 |
+
size 388374
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step20
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cb795a5cea0baa625c50007a6c9da09c6bbb5c16b560424070384a479e7d8a6
|
3 |
+
size 14512
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f19604377bd828eb366c68946ad997a4ff4d69beaeea93ee58915135768ec63
|
3 |
+
size 14512
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63645486a3e3e7ae3df0b90ccdad6a88372bee5e36403d533a3b105e3057dd94
|
3 |
+
size 1064
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/trainer_state.json
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.78369141,
|
3 |
+
"best_model_checkpoint": "/home/wangruotong/LLM_test/output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20",
|
4 |
+
"epoch": 0.8080808080808081,
|
5 |
+
"eval_steps": 20,
|
6 |
+
"global_step": 20,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.04040404040404041,
|
13 |
+
"grad_norm": 1.24702048103415,
|
14 |
+
"learning_rate": 1.6666666666666667e-05,
|
15 |
+
"logits/chosen": -0.51953125,
|
16 |
+
"logits/rejected": -0.140625,
|
17 |
+
"logps/chosen": -552.0,
|
18 |
+
"logps/rejected": -1064.0,
|
19 |
+
"loss": 1.94580078125,
|
20 |
+
"memory(GiB)": 25.69,
|
21 |
+
"nll_loss": 1.5703125,
|
22 |
+
"rewards/accuracies": 0.0,
|
23 |
+
"rewards/chosen": 0.0,
|
24 |
+
"rewards/margins": 0.0,
|
25 |
+
"rewards/rejected": 0.0,
|
26 |
+
"step": 1,
|
27 |
+
"train_speed(iter/s)": 0.027363
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.20202020202020202,
|
31 |
+
"grad_norm": 1.5074727724564423,
|
32 |
+
"learning_rate": 8.333333333333334e-05,
|
33 |
+
"logits/chosen": -0.458984375,
|
34 |
+
"logits/rejected": 0.033935546875,
|
35 |
+
"logps/chosen": -712.0,
|
36 |
+
"logps/rejected": -708.0,
|
37 |
+
"loss": 2.4593505859375,
|
38 |
+
"memory(GiB)": 25.7,
|
39 |
+
"nll_loss": 1.515625,
|
40 |
+
"rewards/accuracies": 0.1875,
|
41 |
+
"rewards/chosen": 0.0234375,
|
42 |
+
"rewards/margins": -0.042236328125,
|
43 |
+
"rewards/rejected": 0.06591796875,
|
44 |
+
"step": 5,
|
45 |
+
"train_speed(iter/s)": 0.039476
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.40404040404040403,
|
49 |
+
"grad_norm": 0.9228133591717713,
|
50 |
+
"learning_rate": 9.969653386589748e-05,
|
51 |
+
"logits/chosen": -0.185546875,
|
52 |
+
"logits/rejected": -0.034912109375,
|
53 |
+
"logps/chosen": -636.0,
|
54 |
+
"logps/rejected": -600.0,
|
55 |
+
"loss": 1.776171875,
|
56 |
+
"memory(GiB)": 25.7,
|
57 |
+
"nll_loss": 1.1171875,
|
58 |
+
"rewards/accuracies": 0.75,
|
59 |
+
"rewards/chosen": 0.66796875,
|
60 |
+
"rewards/margins": 0.63671875,
|
61 |
+
"rewards/rejected": 0.03369140625,
|
62 |
+
"step": 10,
|
63 |
+
"train_speed(iter/s)": 0.042464
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.6060606060606061,
|
67 |
+
"grad_norm": 0.7395575770882112,
|
68 |
+
"learning_rate": 9.847001329696653e-05,
|
69 |
+
"logits/chosen": -0.51171875,
|
70 |
+
"logits/rejected": -0.07568359375,
|
71 |
+
"logps/chosen": -652.0,
|
72 |
+
"logps/rejected": -668.0,
|
73 |
+
"loss": 1.723095703125,
|
74 |
+
"memory(GiB)": 25.7,
|
75 |
+
"nll_loss": 1.4140625,
|
76 |
+
"rewards/accuracies": 0.949999988079071,
|
77 |
+
"rewards/chosen": 2.609375,
|
78 |
+
"rewards/margins": 2.203125,
|
79 |
+
"rewards/rejected": 0.408203125,
|
80 |
+
"step": 15,
|
81 |
+
"train_speed(iter/s)": 0.043941
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.8080808080808081,
|
85 |
+
"grad_norm": 0.26101957851244034,
|
86 |
+
"learning_rate": 9.632470336074009e-05,
|
87 |
+
"logits/chosen": -0.72265625,
|
88 |
+
"logits/rejected": -0.06982421875,
|
89 |
+
"logps/chosen": -418.0,
|
90 |
+
"logps/rejected": -596.0,
|
91 |
+
"loss": 1.1149658203125,
|
92 |
+
"memory(GiB)": 25.7,
|
93 |
+
"nll_loss": 1.078125,
|
94 |
+
"rewards/accuracies": 1.0,
|
95 |
+
"rewards/chosen": 5.6875,
|
96 |
+
"rewards/margins": 3.328125,
|
97 |
+
"rewards/rejected": 2.359375,
|
98 |
+
"step": 20,
|
99 |
+
"train_speed(iter/s)": 0.04473
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.8080808080808081,
|
103 |
+
"eval_logits/chosen": -0.453125,
|
104 |
+
"eval_logits/rejected": -1.0234375,
|
105 |
+
"eval_logps/chosen": -1224.0,
|
106 |
+
"eval_logps/rejected": -362.0,
|
107 |
+
"eval_loss": 0.78369140625,
|
108 |
+
"eval_nll_loss": 0.9921875,
|
109 |
+
"eval_rewards/accuracies": 1.0,
|
110 |
+
"eval_rewards/chosen": 6.46875,
|
111 |
+
"eval_rewards/margins": 3.40625,
|
112 |
+
"eval_rewards/rejected": 3.0625,
|
113 |
+
"eval_runtime": 2.4718,
|
114 |
+
"eval_samples_per_second": 1.618,
|
115 |
+
"eval_steps_per_second": 0.809,
|
116 |
+
"step": 20
|
117 |
+
}
|
118 |
+
],
|
119 |
+
"logging_steps": 5,
|
120 |
+
"max_steps": 120,
|
121 |
+
"num_input_tokens_seen": 0,
|
122 |
+
"num_train_epochs": 5,
|
123 |
+
"save_steps": 20,
|
124 |
+
"stateful_callbacks": {
|
125 |
+
"TrainerControl": {
|
126 |
+
"args": {
|
127 |
+
"should_epoch_stop": false,
|
128 |
+
"should_evaluate": false,
|
129 |
+
"should_log": false,
|
130 |
+
"should_save": true,
|
131 |
+
"should_training_stop": false
|
132 |
+
},
|
133 |
+
"attributes": {}
|
134 |
+
}
|
135 |
+
},
|
136 |
+
"total_flos": 1935000764416.0,
|
137 |
+
"train_batch_size": 1,
|
138 |
+
"trial_name": null,
|
139 |
+
"trial_params": null
|
140 |
+
}
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c9971bed8fc8c96e32aeec854c7366dccfed250f1c481c02a2a99548410dab4
|
3 |
+
size 8888
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-20/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
output_deepseek_dpo/deepseek-r1-1.5b_400_0.5_dpo_8192_rank8_epoch5_random20/v0-20250124-183757/checkpoint-40/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /home/wangruotong/LLM_test/Models/deepseek-r1-1.5b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|