wwydmanski commited on
Commit
9dcaea4
·
verified ·
1 Parent(s): 1153c85

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,431 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:10053
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: allenai/specter2_base
10
+ widget:
11
+ - source_sentence: Fluorescence quenching of tryptophan residues
12
+ sentences:
13
+ - 'Fluorescence of buried tyrosine residues in proteins. '
14
+ - 'A fluorescence quenching study of tryptophanyl residues of (Ca2+ + Mg2+)-ATPase
15
+ from sarcoplasmic reticulum. '
16
+ - 'Some hormonal influences on the acetylation of sulfanilamide in vivo. '
17
+ - source_sentence: Human migration to the Americas
18
+ sentences:
19
+ - 'Homo sapiens in the Americas. Overview of the earliest human expansion in the
20
+ New World. '
21
+ - 'Profiles of College Drinkers Defined by Alcohol Behaviors at the Week Level:
22
+ Replication Across Semesters and Prospective Associations With Hazardous Drinking
23
+ and Dependence-Related Symptoms. '
24
+ - 'Human migration. '
25
+ - source_sentence: Human Mobility Prediction
26
+ sentences:
27
+ - 'Human mobility prediction from region functions with taxi trajectories. '
28
+ - 'Understanding Human Mobility from Twitter. '
29
+ - 'Ovarian cancer gene therapy using HPV-16 pseudovirion carrying the HSV-tk gene. '
30
+ - source_sentence: Nevirapine Resistance
31
+ sentences:
32
+ - 'Nevirapine toxicity. '
33
+ - 'Recognizing rhenium. '
34
+ - 'Update on nevirapine: quest for a niche. '
35
+ - source_sentence: EHL tendon reconstruction
36
+ sentences:
37
+ - 'A Combined Surgical Approach for Extensor Hallucis Longus Reconstruction: Two
38
+ Case Reports. '
39
+ - 'Flexor tendon reconstruction. '
40
+ - 'Noble gases and neuroprotection: summary of current evidence. '
41
+ pipeline_tag: sentence-similarity
42
+ library_name: sentence-transformers
43
+ metrics:
44
+ - cosine_accuracy
45
+ - dot_accuracy
46
+ - manhattan_accuracy
47
+ - euclidean_accuracy
48
+ - max_accuracy
49
+ model-index:
50
+ - name: SentenceTransformer based on allenai/specter2_base
51
+ results:
52
+ - task:
53
+ type: triplet
54
+ name: Triplet
55
+ dataset:
56
+ name: triplet dev
57
+ type: triplet-dev
58
+ metrics:
59
+ - type: cosine_accuracy
60
+ value: 0.573
61
+ name: Cosine Accuracy
62
+ - type: dot_accuracy
63
+ value: 0.455
64
+ name: Dot Accuracy
65
+ - type: manhattan_accuracy
66
+ value: 0.576
67
+ name: Manhattan Accuracy
68
+ - type: euclidean_accuracy
69
+ value: 0.577
70
+ name: Euclidean Accuracy
71
+ - type: max_accuracy
72
+ value: 0.577
73
+ name: Max Accuracy
74
+ ---
75
+
76
+ # SentenceTransformer based on allenai/specter2_base
77
+
78
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
79
+
80
+ ## Model Details
81
+
82
+ ### Model Description
83
+ - **Model Type:** Sentence Transformer
84
+ - **Base model:** [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) <!-- at revision 3447645e1def9117997203454fa4495937bfbd83 -->
85
+ - **Maximum Sequence Length:** 512 tokens
86
+ - **Output Dimensionality:** 768 tokens
87
+ - **Similarity Function:** Cosine Similarity
88
+ - **Training Dataset:**
89
+ - json
90
+ <!-- - **Language:** Unknown -->
91
+ <!-- - **License:** Unknown -->
92
+
93
+ ### Model Sources
94
+
95
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
96
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
97
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
98
+
99
+ ### Full Model Architecture
100
+
101
+ ```
102
+ SentenceTransformer(
103
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction
104
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
105
+ )
106
+ ```
107
+
108
+ ## Usage
109
+
110
+ ### Direct Usage (Sentence Transformers)
111
+
112
+ First install the Sentence Transformers library:
113
+
114
+ ```bash
115
+ pip install -U sentence-transformers
116
+ ```
117
+
118
+ Then you can load this model and run inference.
119
+ ```python
120
+ from sentence_transformers import SentenceTransformer
121
+
122
+ # Download from the 🤗 Hub
123
+ model = SentenceTransformer("sentence_transformers_model_id")
124
+ # Run inference
125
+ sentences = [
126
+ 'EHL tendon reconstruction',
127
+ 'A Combined Surgical Approach for Extensor Hallucis Longus Reconstruction: Two Case Reports. ',
128
+ 'Flexor tendon reconstruction. ',
129
+ ]
130
+ embeddings = model.encode(sentences)
131
+ print(embeddings.shape)
132
+ # [3, 768]
133
+
134
+ # Get the similarity scores for the embeddings
135
+ similarities = model.similarity(embeddings, embeddings)
136
+ print(similarities.shape)
137
+ # [3, 3]
138
+ ```
139
+
140
+ <!--
141
+ ### Direct Usage (Transformers)
142
+
143
+ <details><summary>Click to see the direct usage in Transformers</summary>
144
+
145
+ </details>
146
+ -->
147
+
148
+ <!--
149
+ ### Downstream Usage (Sentence Transformers)
150
+
151
+ You can finetune this model on your own dataset.
152
+
153
+ <details><summary>Click to expand</summary>
154
+
155
+ </details>
156
+ -->
157
+
158
+ <!--
159
+ ### Out-of-Scope Use
160
+
161
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
162
+ -->
163
+
164
+ ## Evaluation
165
+
166
+ ### Metrics
167
+
168
+ #### Triplet
169
+ * Dataset: `triplet-dev`
170
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
171
+
172
+ | Metric | Value |
173
+ |:--------------------|:----------|
174
+ | **cosine_accuracy** | **0.573** |
175
+ | dot_accuracy | 0.455 |
176
+ | manhattan_accuracy | 0.576 |
177
+ | euclidean_accuracy | 0.577 |
178
+ | max_accuracy | 0.577 |
179
+
180
+ <!--
181
+ ## Bias, Risks and Limitations
182
+
183
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
184
+ -->
185
+
186
+ <!--
187
+ ### Recommendations
188
+
189
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
190
+ -->
191
+
192
+ ## Training Details
193
+
194
+ ### Training Dataset
195
+
196
+ #### json
197
+
198
+ * Dataset: json
199
+ * Size: 10,053 training samples
200
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
201
+ * Approximate statistics based on the first 1000 samples:
202
+ | | anchor | positive | negative |
203
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
204
+ | type | string | string | string |
205
+ | details | <ul><li>min: 4 tokens</li><li>mean: 7.54 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 20.11 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.36 tokens</li><li>max: 48 tokens</li></ul> |
206
+ * Samples:
207
+ | anchor | positive | negative |
208
+ |:-------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------|
209
+ | <code>COM-induced secretome changes in U937 monocytes</code> | <code>Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. </code> | <code>Monocytes. </code> |
210
+ | <code>Metamaterials</code> | <code>Sound attenuation optimization using metaporous materials tuned on exceptional points. </code> | <code>Metamaterials: A cat's eye for all directions. </code> |
211
+ | <code>Pediatric Parasitology</code> | <code>Parasitic infections among school age children 6 to 11-years-of-age in the Eastern province. </code> | <code>[DIALOGUE ON PEDIATRIC PARASITOLOGY]. </code> |
212
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
213
+ ```json
214
+ {
215
+ "scale": 20.0,
216
+ "similarity_fct": "cos_sim"
217
+ }
218
+ ```
219
+
220
+ ### Training Hyperparameters
221
+ #### Non-Default Hyperparameters
222
+
223
+ - `eval_strategy`: steps
224
+ - `per_device_train_batch_size`: 512
225
+ - `per_device_eval_batch_size`: 512
226
+ - `learning_rate`: 0.001
227
+ - `num_train_epochs`: 1
228
+ - `lr_scheduler_type`: cosine_with_restarts
229
+ - `warmup_ratio`: 0.1
230
+ - `bf16`: True
231
+ - `batch_sampler`: no_duplicates
232
+
233
+ #### All Hyperparameters
234
+ <details><summary>Click to expand</summary>
235
+
236
+ - `overwrite_output_dir`: False
237
+ - `do_predict`: False
238
+ - `eval_strategy`: steps
239
+ - `prediction_loss_only`: True
240
+ - `per_device_train_batch_size`: 512
241
+ - `per_device_eval_batch_size`: 512
242
+ - `per_gpu_train_batch_size`: None
243
+ - `per_gpu_eval_batch_size`: None
244
+ - `gradient_accumulation_steps`: 1
245
+ - `eval_accumulation_steps`: None
246
+ - `torch_empty_cache_steps`: None
247
+ - `learning_rate`: 0.001
248
+ - `weight_decay`: 0.0
249
+ - `adam_beta1`: 0.9
250
+ - `adam_beta2`: 0.999
251
+ - `adam_epsilon`: 1e-08
252
+ - `max_grad_norm`: 1.0
253
+ - `num_train_epochs`: 1
254
+ - `max_steps`: -1
255
+ - `lr_scheduler_type`: cosine_with_restarts
256
+ - `lr_scheduler_kwargs`: {}
257
+ - `warmup_ratio`: 0.1
258
+ - `warmup_steps`: 0
259
+ - `log_level`: passive
260
+ - `log_level_replica`: warning
261
+ - `log_on_each_node`: True
262
+ - `logging_nan_inf_filter`: True
263
+ - `save_safetensors`: True
264
+ - `save_on_each_node`: False
265
+ - `save_only_model`: False
266
+ - `restore_callback_states_from_checkpoint`: False
267
+ - `no_cuda`: False
268
+ - `use_cpu`: False
269
+ - `use_mps_device`: False
270
+ - `seed`: 42
271
+ - `data_seed`: None
272
+ - `jit_mode_eval`: False
273
+ - `use_ipex`: False
274
+ - `bf16`: True
275
+ - `fp16`: False
276
+ - `fp16_opt_level`: O1
277
+ - `half_precision_backend`: auto
278
+ - `bf16_full_eval`: False
279
+ - `fp16_full_eval`: False
280
+ - `tf32`: None
281
+ - `local_rank`: 0
282
+ - `ddp_backend`: None
283
+ - `tpu_num_cores`: None
284
+ - `tpu_metrics_debug`: False
285
+ - `debug`: []
286
+ - `dataloader_drop_last`: False
287
+ - `dataloader_num_workers`: 0
288
+ - `dataloader_prefetch_factor`: None
289
+ - `past_index`: -1
290
+ - `disable_tqdm`: False
291
+ - `remove_unused_columns`: True
292
+ - `label_names`: None
293
+ - `load_best_model_at_end`: False
294
+ - `ignore_data_skip`: False
295
+ - `fsdp`: []
296
+ - `fsdp_min_num_params`: 0
297
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
298
+ - `fsdp_transformer_layer_cls_to_wrap`: None
299
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
300
+ - `deepspeed`: None
301
+ - `label_smoothing_factor`: 0.0
302
+ - `optim`: adamw_torch
303
+ - `optim_args`: None
304
+ - `adafactor`: False
305
+ - `group_by_length`: False
306
+ - `length_column_name`: length
307
+ - `ddp_find_unused_parameters`: None
308
+ - `ddp_bucket_cap_mb`: None
309
+ - `ddp_broadcast_buffers`: False
310
+ - `dataloader_pin_memory`: True
311
+ - `dataloader_persistent_workers`: False
312
+ - `skip_memory_metrics`: True
313
+ - `use_legacy_prediction_loop`: False
314
+ - `push_to_hub`: False
315
+ - `resume_from_checkpoint`: None
316
+ - `hub_model_id`: None
317
+ - `hub_strategy`: every_save
318
+ - `hub_private_repo`: False
319
+ - `hub_always_push`: False
320
+ - `gradient_checkpointing`: False
321
+ - `gradient_checkpointing_kwargs`: None
322
+ - `include_inputs_for_metrics`: False
323
+ - `eval_do_concat_batches`: True
324
+ - `fp16_backend`: auto
325
+ - `push_to_hub_model_id`: None
326
+ - `push_to_hub_organization`: None
327
+ - `mp_parameters`:
328
+ - `auto_find_batch_size`: False
329
+ - `full_determinism`: False
330
+ - `torchdynamo`: None
331
+ - `ray_scope`: last
332
+ - `ddp_timeout`: 1800
333
+ - `torch_compile`: False
334
+ - `torch_compile_backend`: None
335
+ - `torch_compile_mode`: None
336
+ - `dispatch_batches`: None
337
+ - `split_batches`: None
338
+ - `include_tokens_per_second`: False
339
+ - `include_num_input_tokens_seen`: False
340
+ - `neftune_noise_alpha`: None
341
+ - `optim_target_modules`: None
342
+ - `batch_eval_metrics`: False
343
+ - `eval_on_start`: False
344
+ - `use_liger_kernel`: False
345
+ - `eval_use_gather_object`: False
346
+ - `batch_sampler`: no_duplicates
347
+ - `multi_dataset_batch_sampler`: proportional
348
+
349
+ </details>
350
+
351
+ ### Training Logs
352
+ | Epoch | Step | Training Loss | triplet-dev_cosine_accuracy |
353
+ |:-----:|:----:|:-------------:|:---------------------------:|
354
+ | 0 | 0 | - | 0.373 |
355
+ | 0.05 | 1 | 4.5633 | - |
356
+ | 0.1 | 2 | 4.5857 | - |
357
+ | 0.15 | 3 | 4.1852 | - |
358
+ | 0.2 | 4 | 3.2547 | - |
359
+ | 0.25 | 5 | 2.3117 | - |
360
+ | 0.3 | 6 | 1.949 | - |
361
+ | 0.35 | 7 | 1.7767 | - |
362
+ | 0.4 | 8 | 1.79 | - |
363
+ | 0.45 | 9 | 1.6081 | - |
364
+ | 0.5 | 10 | 1.7499 | - |
365
+ | 0.55 | 11 | 1.6395 | - |
366
+ | 0.6 | 12 | 1.5645 | - |
367
+ | 0.65 | 13 | 1.5804 | - |
368
+ | 0.7 | 14 | 1.5303 | - |
369
+ | 0.75 | 15 | 1.5452 | - |
370
+ | 0.8 | 16 | 1.5012 | - |
371
+ | 0.85 | 17 | 1.5283 | - |
372
+ | 0.9 | 18 | 1.5982 | - |
373
+ | 0.95 | 19 | 1.4714 | - |
374
+ | 1.0 | 20 | 1.3331 | 0.573 |
375
+
376
+
377
+ ### Framework Versions
378
+ - Python: 3.9.19
379
+ - Sentence Transformers: 3.1.1
380
+ - Transformers: 4.45.2
381
+ - PyTorch: 2.5.0
382
+ - Accelerate: 1.0.1
383
+ - Datasets: 2.19.0
384
+ - Tokenizers: 0.20.3
385
+
386
+ ## Citation
387
+
388
+ ### BibTeX
389
+
390
+ #### Sentence Transformers
391
+ ```bibtex
392
+ @inproceedings{reimers-2019-sentence-bert,
393
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
394
+ author = "Reimers, Nils and Gurevych, Iryna",
395
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
396
+ month = "11",
397
+ year = "2019",
398
+ publisher = "Association for Computational Linguistics",
399
+ url = "https://arxiv.org/abs/1908.10084",
400
+ }
401
+ ```
402
+
403
+ #### MultipleNegativesRankingLoss
404
+ ```bibtex
405
+ @misc{henderson2017efficient,
406
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
407
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
408
+ year={2017},
409
+ eprint={1705.00652},
410
+ archivePrefix={arXiv},
411
+ primaryClass={cs.CL}
412
+ }
413
+ ```
414
+
415
+ <!--
416
+ ## Glossary
417
+
418
+ *Clearly define terms in order to be accessible across audiences.*
419
+ -->
420
+
421
+ <!--
422
+ ## Model Card Authors
423
+
424
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
425
+ -->
426
+
427
+ <!--
428
+ ## Model Card Contact
429
+
430
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
431
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "allenai/specter2_base",
3
+ "adapters": {
4
+ "adapters": {},
5
+ "config_map": {},
6
+ "fusion_config_map": {},
7
+ "fusions": {}
8
+ },
9
+ "architectures": [
10
+ "BertModel"
11
+ ],
12
+ "attention_probs_dropout_prob": 0.1,
13
+ "classifier_dropout": null,
14
+ "hidden_act": "gelu",
15
+ "hidden_dropout_prob": 0.1,
16
+ "hidden_size": 768,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 3072,
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.45.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 31090
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f28c210968fa892fc8131e69d75c4d3935559efb78f5ebf6c1fcc47d3f4fa1d7
3
+ size 439696224
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "101": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "102": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "103": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff