Initial try of uploading a model in deep RL course.
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -494.71 +/- 525.22
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fca7e293a30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca7e293ac0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca7e293b50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca7e293be0>", "_build": "<function ActorCriticPolicy._build at 0x7fca7e293c70>", "forward": "<function ActorCriticPolicy.forward at 0x7fca7e293d00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca7e293d90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca7e293e20>", "_predict": "<function ActorCriticPolicy._predict at 0x7fca7e293eb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca7e293f40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca7e288040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca7e2880d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fca7e433f00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705057797206911850, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANokt72TgMA/NuVCv5eufT5BlGk9zXjzPQAAAAAAAAAAjUTNvURvvz8L9/e+AvShvLNoSz1qBgo+AAAAAAAAAAAN3sk97089PvrKZ72nSJe/dw65PhN/gD4AAAAAAAAAADMxdzzOe7A/GGubPiEKmL5pI+C8dba/vQAAAAAAAAAA5iZfPr1ZBz/nyw8/1piHv46JGL/YcZe+AAAAAAAAAABgTMU+G4CoPYtNID8zdaG/dG/4vihzub0AAAAAAAAAANZ/lL6lPJo/bQXsvqpALb+ypRO7LgoDPgAAAAAAAAAAAHRSvPpfrz/CmRG+VXpivt8KUjvwSQI8AAAAAAAAAAD6YY++icsKP9Q0K79wi5S/kypQPur3xz0AAAAAAAAAAO2BED5AgrM/RYlWP4TFmL3lvE++EzhlvgAAAAAAAAAAmqkUPZ6Yuj8Cuh0/zbuSPjaBRr1L3y6+AAAAAAAAAADAw5y9Q5sfPy16Xr6xw5y/aZTUPuP4Tz4AAAAAAAAAAGbPYj0jm7I/w5UIPgHJcL5vv0I9Pq5oPgAAAAAAAAAArWS0PtH0bD+ARUY/WRNGv2W4AL/R5jG+AAAAAAAAAACztmC+SHOQP7oNRb/J/xa/St7mPb7AmTsAAAAAAAAAACeBdL8BsEU/PFA+vzTthr86NrO+kV6KvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDnW/336AOKMAWyUS2KMAXSUR0B+cM4NqgyudX2UKGgGR8Bnz00SAYpEaAdLYGgIR0B+cQnPVurIdX2UKGgGR8BbmTeoDPnkaAdLYWgIR0B+cT6ciGFjdX2UKGgGR8BPuwazeGfxaAdLSGgIR0B+ce2Yv38GdX2UKGgGR8BZ6YhIOH32aAdLTGgIR0B+clBiTdLydX2UKGgGR8Byk7tx+8XfaAdLa2gIR0B+coidJ8OTdX2UKGgGR8BdVd4eLehxaAdLWGgIR0B+ctVU+9rXdX2UKGgGR8BdKrc0tRNzaAdLWGgIR0B+cr5BTn7pdX2UKGgGR8BocbA57w8XaAdLYWgIR0B+cybLEDQrdX2UKGgGR8BiM4D3dsSCaAdLX2gIR0B+cxxgiNbUdX2UKGgGR8BfZpAMUh3aaAdLg2gIR0B+c4iu+yqudX2UKGgGR8BgG2VzIV/MaAdLYGgIR0B+c1NRFZxJdX2UKGgGR8BgYzD4xk/baAdLY2gIR0B+dK24NI9UdX2UKGgGR8B3MEhMajveaAdLemgIR0B+dKg7HQyAdX2UKGgGR8BUZ18G9pRGaAdLWWgIR0B+dMO8TSLJdX2UKGgGR8BVXhjjJdSmaAdLSmgIR0B+dQ+GGmDUdX2UKGgGR8BYLvatcObzaAdLSmgIR0B+dXwgDA8CdX2UKGgGR8B3/z0lJHy3aAdLZmgIR0B+db642CNCdX2UKGgGR8Bi4pB9kSVXaAdLQGgIR0B+dlC4SYgJdX2UKGgGR8By9v1QIldDaAdLWWgIR0B+dvMpw0fpdX2UKGgGR8BnX5DCxeLOaAdLQWgIR0B+dr1pTMq0dX2UKGgGR8BcFRsQ/X5GaAdLVGgIR0B+d0GdI5HVdX2UKGgGR8BlnapLmITHaAdLRWgIR0B+d28yvcJudX2UKGgGR8BlRn7SApazaAdLVWgIR0B+eAnCwbEQdX2UKGgGR8B6bCnIhhYvaAdLiGgIR0B+eO8kD6nBdX2UKGgGR8BTvGPcSGrTaAdLS2gIR0B+eRRVIZqEdX2UKGgGR8BRFpwCKaXsaAdLP2gIR0B+eTZQHiWFdX2UKGgGR8BnRztVrAP/aAdLbmgIR0B+ebcWTHKfdX2UKGgGR8BvQw60Y0l7aAdLgmgIR0B+emZ+hGpddX2UKGgGR8BrBHh/Aj6faAdLkGgIR0B+erIDHOrydX2UKGgGR8BjaDsD4gzQaAdLS2gIR0B+etOwgTysdX2UKGgGR8BnxzBdld1MaAdLYWgIR0B+e5PuXu3MdX2UKGgGR8BolP1jAi3YaAdLVGgIR0B+e+kBS1mbdX2UKGgGR8BikD0e2d/baAdLfGgIR0B+fBANXo1UdX2UKGgGR8B0ccJWvKU3aAdLVWgIR0B+fH8VHnU2dX2UKGgGR8ByREKu0TlDaAdLgWgIR0B+fHUKArhBdX2UKGgGR8BeXmFrVOKwaAdLUGgIR0B+fOEkB0ZFdX2UKGgGR8BQqA0Kqn3taAdLhWgIR0B+fPwMH8jzdX2UKGgGR8BiSFfoicG1aAdLTGgIR0B+fZuQ6p5vdX2UKGgGR8Anu71ZkkKNaAdLamgIR0B+fdBgNPP+dX2UKGgGR8BW/CaiKziTaAdLQmgIR0B+fk1m8M/hdX2UKGgGR8BxW+XJHRTkaAdLYGgIR0B+fpx1gYxddX2UKGgGR8B6Ic6+36RAaAdLYWgIR0B+fu9alk6LdX2UKGgGR8Bn4/jU/fO2aAdLjmgIR0B+f3ASFoL5dX2UKGgGR8BsB24y44IbaAdLVmgIR0B+f79Q40djdX2UKGgGR8BmkfscABDHaAdLUWgIR0B+f5jgAIY4dX2UKGgGR8BZEdSQ5myxaAdLPmgIR0B+gAT+NtIkdX2UKGgGR8BhPl1r6+FlaAdLZ2gIR0B+f8kKNQ0odX2UKGgGR8Bi+SSvC/GmaAdLQmgIR0B+f9Wq94/vdX2UKGgGR8BpADdrO7g9aAdLVGgIR0B+gZLxqfvndX2UKGgGR8Bz3EQd0aIfaAdLYmgIR0B+gW1kUbkwdX2UKGgGR8BkUba7EpAlaAdLTGgIR0B+ghenhsIndX2UKGgGR8BjK/2Xb/OuaAdLcmgIR0B+ghIe5nUUdX2UKGgGR8BgG/NA1NxmaAdLPGgIR0B+glF6Rhc8dX2UKGgGR8BjLE7r9l3AaAdLYGgIR0B+gmcz67/XdX2UKGgGR8BZF5xWDHwPaAdLSWgIR0B+gnMJQcghdX2UKGgGR8BXr/Dxb0OFaAdLSmgIR0B+gsfMfRu1dX2UKGgGR8BYltPk7wKCaAdLXmgIR0B+guqMm4RVdX2UKGgGR8BepWyTpxFRaAdLc2gIR0B+gu2F36hydX2UKGgGR8BePG/i5uqFaAdLTmgIR0B+hGpMpPRBdX2UKGgGR8BwesgxJul5aAdLUmgIR0B+hOnIhhYvdX2UKGgGR8BV+UGiYb84aAdLYGgIR0B+hSIInjQzdX2UKGgGR8BZTnOW0JF9aAdLVmgIR0B+hOl0o0AMdX2UKGgGR8BxoLjebd8BaAdLWmgIR0B+hPe1rqMWdX2UKGgGR8BZB4kVvddnaAdLYWgIR0B+hYK+i8FqdX2UKGgGR8BZqK7EpAlfaAdLQGgIR0B+hkleF+NMdX2UKGgGR8BSSarBCUosaAdLQ2gIR0B+hn7CSA6NdX2UKGgGR8BjzQhW5paiaAdLc2gIR0B+iHH1e0HAdX2UKGgGR8BX0u0Xxe9jaAdLaGgIR0B+iLdZaFEidX2UKGgGR8BZAGnwXqJNaAdLQ2gIR0B+iPTspobodX2UKGgGR8CBUYaKk2xZaAdLbmgIR0B+iNp8F6iTdX2UKGgGR8B3+T8l5WzXaAdLdGgIR0B+iUKjSG8FdX2UKGgGR8AzKCL/CIk7aAdLf2gIR0B+iWL74zrNdX2UKGgGR8BRJyuloDgZaAdLR2gIR0B+iUUDdP+GdX2UKGgGR8A/lgvDgqEwaAdLYWgIR0B+iktL+PzWdX2UKGgGR8BuzD9l2/zraAdLW2gIR0B+iptpEhJRdX2UKGgGR8BohbtzCDVZaAdLfGgIR0B+ipHBk7OndX2UKGgGR8BhvO4wyqMnaAdLSWgIR0B+isg2ZRbbdX2UKGgGR8By286U7jkuaAdLfWgIR0B+iqnR9gF5dX2UKGgGR8BoCBu89Oh1aAdLgmgIR0B+is2gnMMadX2UKGgGR8Bcf/PTodMkaAdLY2gIR0B+itz7uUlidX2UKGgGR8B0hFOO801qaAdLXGgIR0B+jAYO2AoYdX2UKGgGR8Bj22xlg+hXaAdLcmgIR0B+jD+717IDdX2UKGgGR8BSWw6ZH/cWaAdLQmgIR0B+jLhFVktmdX2UKGgGR8BcyFme18b8aAdLRmgIR0B+jH50r9VFdX2UKGgGR8BLIXAmAskIaAdLQWgIR0B+jQcPvrnldX2UKGgGR8Bq4W23KB/aaAdLUGgIR0B+jbcAR02cdX2UKGgGR8BixehEjPfLaAdLWmgIR0B+jc3FUADJdX2UKGgGR8BUpWYF7laKaAdLRmgIR0B+jpjDsMRZdX2UKGgGR8BecDPSlWOqaAdLQ2gIR0B+joDYAbQ1dX2UKGgGR8BlaSqS5iEyaAdLbWgIR0B+jvOMVDa5dX2UKGgGR8BjXG5WilBQaAdLUGgIR0B+jwtbs4T9dX2UKGgGR8Bbc3X2/SH/aAdLd2gIR0B+j+1og3cYdX2UKGgGR8BQkXuuzQeFaAdLQGgIR0B+kBHTZxrBdX2UKGgGR8BaEZyEL6UJaAdLa2gIR0B+kJWEK3NLdX2UKGgGR8B9D8NsnAqNaAdLamgIR0B+kLY/Vy3kdX2UKGgGR8BVAm/FirksaAdLT2gIR0B+kTOt4iX6dX2UKGgGR8BxluIacZtOaAdLdmgIR0B+kTVAiV0LdX2UKGgGR8Bn7YHxBmf5aAdLX2gIR0B+kWeHzpX7dX2UKGgGR8BjHRNM495haAdLT2gIR0B+kYxdpqREdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f3325c2a9c64ab3b73b48551da20cbbc84fee15c2765c56cd53bdeaa090a667
|
3 |
+
size 147915
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fca7e293a30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca7e293ac0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca7e293b50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca7e293be0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fca7e293c70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fca7e293d00>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca7e293d90>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca7e293e20>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fca7e293eb0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca7e293f40>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca7e288040>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca7e2880d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fca7e433f00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 16384,
|
25 |
+
"_total_timesteps": 1000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1705057797206911850,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANokt72TgMA/NuVCv5eufT5BlGk9zXjzPQAAAAAAAAAAjUTNvURvvz8L9/e+AvShvLNoSz1qBgo+AAAAAAAAAAAN3sk97089PvrKZ72nSJe/dw65PhN/gD4AAAAAAAAAADMxdzzOe7A/GGubPiEKmL5pI+C8dba/vQAAAAAAAAAA5iZfPr1ZBz/nyw8/1piHv46JGL/YcZe+AAAAAAAAAABgTMU+G4CoPYtNID8zdaG/dG/4vihzub0AAAAAAAAAANZ/lL6lPJo/bQXsvqpALb+ypRO7LgoDPgAAAAAAAAAAAHRSvPpfrz/CmRG+VXpivt8KUjvwSQI8AAAAAAAAAAD6YY++icsKP9Q0K79wi5S/kypQPur3xz0AAAAAAAAAAO2BED5AgrM/RYlWP4TFmL3lvE++EzhlvgAAAAAAAAAAmqkUPZ6Yuj8Cuh0/zbuSPjaBRr1L3y6+AAAAAAAAAADAw5y9Q5sfPy16Xr6xw5y/aZTUPuP4Tz4AAAAAAAAAAGbPYj0jm7I/w5UIPgHJcL5vv0I9Pq5oPgAAAAAAAAAArWS0PtH0bD+ARUY/WRNGv2W4AL/R5jG+AAAAAAAAAACztmC+SHOQP7oNRb/J/xa/St7mPb7AmTsAAAAAAAAAACeBdL8BsEU/PFA+vzTthr86NrO+kV6KvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -15.384,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDnW/336AOKMAWyUS2KMAXSUR0B+cM4NqgyudX2UKGgGR8Bnz00SAYpEaAdLYGgIR0B+cQnPVurIdX2UKGgGR8BbmTeoDPnkaAdLYWgIR0B+cT6ciGFjdX2UKGgGR8BPuwazeGfxaAdLSGgIR0B+ce2Yv38GdX2UKGgGR8BZ6YhIOH32aAdLTGgIR0B+clBiTdLydX2UKGgGR8Byk7tx+8XfaAdLa2gIR0B+coidJ8OTdX2UKGgGR8BdVd4eLehxaAdLWGgIR0B+ctVU+9rXdX2UKGgGR8BdKrc0tRNzaAdLWGgIR0B+cr5BTn7pdX2UKGgGR8BocbA57w8XaAdLYWgIR0B+cybLEDQrdX2UKGgGR8BiM4D3dsSCaAdLX2gIR0B+cxxgiNbUdX2UKGgGR8BfZpAMUh3aaAdLg2gIR0B+c4iu+yqudX2UKGgGR8BgG2VzIV/MaAdLYGgIR0B+c1NRFZxJdX2UKGgGR8BgYzD4xk/baAdLY2gIR0B+dK24NI9UdX2UKGgGR8B3MEhMajveaAdLemgIR0B+dKg7HQyAdX2UKGgGR8BUZ18G9pRGaAdLWWgIR0B+dMO8TSLJdX2UKGgGR8BVXhjjJdSmaAdLSmgIR0B+dQ+GGmDUdX2UKGgGR8BYLvatcObzaAdLSmgIR0B+dXwgDA8CdX2UKGgGR8B3/z0lJHy3aAdLZmgIR0B+db642CNCdX2UKGgGR8Bi4pB9kSVXaAdLQGgIR0B+dlC4SYgJdX2UKGgGR8By9v1QIldDaAdLWWgIR0B+dvMpw0fpdX2UKGgGR8BnX5DCxeLOaAdLQWgIR0B+dr1pTMq0dX2UKGgGR8BcFRsQ/X5GaAdLVGgIR0B+d0GdI5HVdX2UKGgGR8BlnapLmITHaAdLRWgIR0B+d28yvcJudX2UKGgGR8BlRn7SApazaAdLVWgIR0B+eAnCwbEQdX2UKGgGR8B6bCnIhhYvaAdLiGgIR0B+eO8kD6nBdX2UKGgGR8BTvGPcSGrTaAdLS2gIR0B+eRRVIZqEdX2UKGgGR8BRFpwCKaXsaAdLP2gIR0B+eTZQHiWFdX2UKGgGR8BnRztVrAP/aAdLbmgIR0B+ebcWTHKfdX2UKGgGR8BvQw60Y0l7aAdLgmgIR0B+emZ+hGpddX2UKGgGR8BrBHh/Aj6faAdLkGgIR0B+erIDHOrydX2UKGgGR8BjaDsD4gzQaAdLS2gIR0B+etOwgTysdX2UKGgGR8BnxzBdld1MaAdLYWgIR0B+e5PuXu3MdX2UKGgGR8BolP1jAi3YaAdLVGgIR0B+e+kBS1mbdX2UKGgGR8BikD0e2d/baAdLfGgIR0B+fBANXo1UdX2UKGgGR8B0ccJWvKU3aAdLVWgIR0B+fH8VHnU2dX2UKGgGR8ByREKu0TlDaAdLgWgIR0B+fHUKArhBdX2UKGgGR8BeXmFrVOKwaAdLUGgIR0B+fOEkB0ZFdX2UKGgGR8BQqA0Kqn3taAdLhWgIR0B+fPwMH8jzdX2UKGgGR8BiSFfoicG1aAdLTGgIR0B+fZuQ6p5vdX2UKGgGR8Anu71ZkkKNaAdLamgIR0B+fdBgNPP+dX2UKGgGR8BW/CaiKziTaAdLQmgIR0B+fk1m8M/hdX2UKGgGR8BxW+XJHRTkaAdLYGgIR0B+fpx1gYxddX2UKGgGR8B6Ic6+36RAaAdLYWgIR0B+fu9alk6LdX2UKGgGR8Bn4/jU/fO2aAdLjmgIR0B+f3ASFoL5dX2UKGgGR8BsB24y44IbaAdLVmgIR0B+f79Q40djdX2UKGgGR8BmkfscABDHaAdLUWgIR0B+f5jgAIY4dX2UKGgGR8BZEdSQ5myxaAdLPmgIR0B+gAT+NtIkdX2UKGgGR8BhPl1r6+FlaAdLZ2gIR0B+f8kKNQ0odX2UKGgGR8Bi+SSvC/GmaAdLQmgIR0B+f9Wq94/vdX2UKGgGR8BpADdrO7g9aAdLVGgIR0B+gZLxqfvndX2UKGgGR8Bz3EQd0aIfaAdLYmgIR0B+gW1kUbkwdX2UKGgGR8BkUba7EpAlaAdLTGgIR0B+ghenhsIndX2UKGgGR8BjK/2Xb/OuaAdLcmgIR0B+ghIe5nUUdX2UKGgGR8BgG/NA1NxmaAdLPGgIR0B+glF6Rhc8dX2UKGgGR8BjLE7r9l3AaAdLYGgIR0B+gmcz67/XdX2UKGgGR8BZF5xWDHwPaAdLSWgIR0B+gnMJQcghdX2UKGgGR8BXr/Dxb0OFaAdLSmgIR0B+gsfMfRu1dX2UKGgGR8BYltPk7wKCaAdLXmgIR0B+guqMm4RVdX2UKGgGR8BepWyTpxFRaAdLc2gIR0B+gu2F36hydX2UKGgGR8BePG/i5uqFaAdLTmgIR0B+hGpMpPRBdX2UKGgGR8BwesgxJul5aAdLUmgIR0B+hOnIhhYvdX2UKGgGR8BV+UGiYb84aAdLYGgIR0B+hSIInjQzdX2UKGgGR8BZTnOW0JF9aAdLVmgIR0B+hOl0o0AMdX2UKGgGR8BxoLjebd8BaAdLWmgIR0B+hPe1rqMWdX2UKGgGR8BZB4kVvddnaAdLYWgIR0B+hYK+i8FqdX2UKGgGR8BZqK7EpAlfaAdLQGgIR0B+hkleF+NMdX2UKGgGR8BSSarBCUosaAdLQ2gIR0B+hn7CSA6NdX2UKGgGR8BjzQhW5paiaAdLc2gIR0B+iHH1e0HAdX2UKGgGR8BX0u0Xxe9jaAdLaGgIR0B+iLdZaFEidX2UKGgGR8BZAGnwXqJNaAdLQ2gIR0B+iPTspobodX2UKGgGR8CBUYaKk2xZaAdLbmgIR0B+iNp8F6iTdX2UKGgGR8B3+T8l5WzXaAdLdGgIR0B+iUKjSG8FdX2UKGgGR8AzKCL/CIk7aAdLf2gIR0B+iWL74zrNdX2UKGgGR8BRJyuloDgZaAdLR2gIR0B+iUUDdP+GdX2UKGgGR8A/lgvDgqEwaAdLYWgIR0B+iktL+PzWdX2UKGgGR8BuzD9l2/zraAdLW2gIR0B+iptpEhJRdX2UKGgGR8BohbtzCDVZaAdLfGgIR0B+ipHBk7OndX2UKGgGR8BhvO4wyqMnaAdLSWgIR0B+isg2ZRbbdX2UKGgGR8By286U7jkuaAdLfWgIR0B+iqnR9gF5dX2UKGgGR8BoCBu89Oh1aAdLgmgIR0B+is2gnMMadX2UKGgGR8Bcf/PTodMkaAdLY2gIR0B+itz7uUlidX2UKGgGR8B0hFOO801qaAdLXGgIR0B+jAYO2AoYdX2UKGgGR8Bj22xlg+hXaAdLcmgIR0B+jD+717IDdX2UKGgGR8BSWw6ZH/cWaAdLQmgIR0B+jLhFVktmdX2UKGgGR8BcyFme18b8aAdLRmgIR0B+jH50r9VFdX2UKGgGR8BLIXAmAskIaAdLQWgIR0B+jQcPvrnldX2UKGgGR8Bq4W23KB/aaAdLUGgIR0B+jbcAR02cdX2UKGgGR8BixehEjPfLaAdLWmgIR0B+jc3FUADJdX2UKGgGR8BUpWYF7laKaAdLRmgIR0B+jpjDsMRZdX2UKGgGR8BecDPSlWOqaAdLQ2gIR0B+joDYAbQ1dX2UKGgGR8BlaSqS5iEyaAdLbWgIR0B+jvOMVDa5dX2UKGgGR8BjXG5WilBQaAdLUGgIR0B+jwtbs4T9dX2UKGgGR8Bbc3X2/SH/aAdLd2gIR0B+j+1og3cYdX2UKGgGR8BQkXuuzQeFaAdLQGgIR0B+kBHTZxrBdX2UKGgGR8BaEZyEL6UJaAdLa2gIR0B+kJWEK3NLdX2UKGgGR8B9D8NsnAqNaAdLamgIR0B+kLY/Vy3kdX2UKGgGR8BVAm/FirksaAdLT2gIR0B+kTOt4iX6dX2UKGgGR8BxluIacZtOaAdLdmgIR0B+kTVAiV0LdX2UKGgGR8Bn7YHxBmf5aAdLX2gIR0B+kWeHzpX7dX2UKGgGR8BjHRNM495haAdLT2gIR0B+kYxdpqREdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 4,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:544761ae6e669bc793683fee9f575921843b2681fc1d07f6ceb54ee1de168e3f
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c1a2ec63618b58d707003a67a2ea4583639ac04c0cfb86de145f5bfd100a917
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (138 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -494.70744809999997, "std_reward": 525.2208703483504, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-12T11:19:59.680334"}
|