Lora models finetuned with 50 data records.
Browse files- README.md +7 -0
- adapter_config.json +19 -0
- adapter_model.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,10 @@
|
|
1 |
---
|
2 |
license: other
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: other
|
3 |
---
|
4 |
+
Finetuned LoRA model with command
|
5 |
+
$llmtune finetune --model llama-30b-4bit --weights llama-30b-4bit.pt --dataset data50.json --adapter alpaca-adapter-folder-30b-4bit
|
6 |
+
|
7 |
+
Using first 50 records of Alpaca dataset from original dataset.json
|
8 |
+
The training loss is almost flat, and result is clearly better than original llama-30b-4bit model.
|
9 |
+
|
10 |
+
License shall follow typical Alpaca family models situation.
|
adapter_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_model_name_or_path": "",
|
3 |
+
"bias": "none",
|
4 |
+
"enable_lora": null,
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"lora_alpha": 16,
|
9 |
+
"lora_dropout": 0.05,
|
10 |
+
"merge_weights": false,
|
11 |
+
"modules_to_save": null,
|
12 |
+
"peft_type": "LORA",
|
13 |
+
"r": 8,
|
14 |
+
"target_modules": [
|
15 |
+
"q_proj",
|
16 |
+
"v_proj"
|
17 |
+
],
|
18 |
+
"task_type": "CAUSAL_LM"
|
19 |
+
}
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4508481cdce9e275cf54674256e0cb8c1036537b18fd391514cd188e3677b612
|
3 |
+
size 51204365
|