haes95 commited on
Commit
0e69137
·
verified ·
1 Parent(s): fa23818

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +163 -1
README.md CHANGED
@@ -37,4 +37,166 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
37
 
38
  tokenizer = AutoTokenizer.from_pretrained("x2bee/PLOAR-7B-DPO-v1.0")
39
  model = AutoModelForCausalLM.from_pretrained("x2bee/PLOAR-7B-DPO-v1.0")
40
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  tokenizer = AutoTokenizer.from_pretrained("x2bee/PLOAR-7B-DPO-v1.0")
39
  model = AutoModelForCausalLM.from_pretrained("x2bee/PLOAR-7B-DPO-v1.0")
40
+ ```
41
+
42
+ ## Downstream Use [Optional]
43
+
44
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
45
+ <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
46
+
47
+
48
+
49
+
50
+ ## Out-of-Scope Use
51
+
52
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
53
+ <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
54
+
55
+
56
+
57
+
58
+ # Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
63
+
64
+
65
+ ## Recommendations
66
+
67
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
+
69
+
70
+
71
+
72
+
73
+ # Training Details
74
+
75
+ ## Training Data
76
+
77
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
78
+
79
+ More information on training data needed
80
+
81
+
82
+ ## Training Procedure
83
+
84
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
85
+
86
+ ### Preprocessing
87
+
88
+ More information needed
89
+
90
+ ### Speeds, Sizes, Times
91
+
92
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
93
+
94
+ More information needed
95
+
96
+ # Evaluation
97
+
98
+ <!-- This section describes the evaluation protocols and provides the results. -->
99
+
100
+ ## Testing Data, Factors & Metrics
101
+
102
+ ### Testing Data
103
+
104
+ <!-- This should link to a Data Card if possible. -->
105
+
106
+ More information needed
107
+
108
+
109
+ ### Factors
110
+
111
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
112
+
113
+ More information needed
114
+
115
+ ### Metrics
116
+
117
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
118
+
119
+ More information needed
120
+
121
+ ## Results
122
+
123
+ More information needed
124
+
125
+ # Model Examination
126
+
127
+ More information needed
128
+
129
+ # Environmental Impact
130
+
131
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
132
+
133
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
134
+
135
+ - **Hardware Type:** More information needed
136
+ - **Hours used:** More information needed
137
+ - **Cloud Provider:** More information needed
138
+ - **Compute Region:** More information needed
139
+ - **Carbon Emitted:** More information needed
140
+
141
+ # Technical Specifications [optional]
142
+
143
+ ## Model Architecture and Objective
144
+
145
+ More information needed
146
+
147
+ ## Compute Infrastructure
148
+
149
+ More information needed
150
+
151
+ ### Hardware
152
+
153
+ More information needed
154
+
155
+ ### Software
156
+
157
+ More information needed
158
+
159
+ # Citation
160
+
161
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
162
+
163
+ **BibTeX:**
164
+
165
+ More information needed
166
+
167
+ **APA:**
168
+
169
+ More information needed
170
+
171
+ # Glossary [optional]
172
+
173
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
174
+
175
+ More information needed
176
+
177
+ # More Information [optional]
178
+
179
+ If you would like more information about our company, please visit the link below.
180
+ [tech.x2bee.com](https://tech.x2bee.com/)
181
+
182
+
183
+ # Model Card Authors [optional]
184
+
185
+ <!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. -->
186
+
187
+ Woomun Jung, MinYoung Joo, Eunsu Ha, Seungjun Son
188
+
189
+ # Model Card Contact
190
+
191
+ More information needed
192
+
193
+ # How to Get Started with the Model
194
+
195
+ Use the code below to get started with the model.
196
+
197
+ <details>
198
+ <summary> Click to expand </summary>
199
+
200
+ More information needed
201
+
202
+ </details>