File size: 6,494 Bytes
e3bb9e5
f91ed5a
 
 
 
 
 
 
 
d62b945
 
 
 
 
7ff2d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df43708
7ff2d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
df43708
7ff2d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
df43708
7ff2d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
df43708
7ff2d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
df43708
7ff2d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df43708
7ff2d9e
ff9f19f
 
 
be2c0c0
6be8dd1
be2c0c0
6be8dd1
d5ba9d7
 
 
 
 
242b4e9
d5ba9d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d504a50
d5ba9d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ff2d9e
 
 
 
 
 
 
 
 
 
 
 
d62b945
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
---
language:
- id
license: apache-2.0
tags:
- Indonesian
- Chat
- Instruct
- unsloth
base_model:
- meta-llama/Llama-3.2-3B-Instruct
datasets:
- NekoFi/alpaca-gpt4-indonesia-cleaned
pipeline_tag: text-generation
model-index:
- name: FinMatcha-3B-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 60.85
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 6.32
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 10.2
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 0.34
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.62
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 16.04
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct
      name: Open LLM Leaderboard
---

![image/jpeg](https://huggingface.co/xMaulana/FinMatcha-3B-Instruct/resolve/main/image.jpg)

# FinMatcha-3B-Instruct

FinMatcha is a powerful Indonesian-focused large language model (LLM) fine-tuned using the [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) base model. The model has been trained to handle a variety of natural language processing tasks such as text generation, summarization, translation, and question-answering, with a special emphasis on understanding and generating Indonesian text.

This model has been fine-tuned on a wide array of Indonesian datasets, making it adept at handling the nuances of the Indonesian language, from formal to colloquial speech. It also supports English for bilingual applications.

## Model Details

- **Finetuned from model**: [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
- **Dataset**: [NekoFi/alpaca-gpt4-indonesia-cleaned](https://huggingface.co/datasets/NekoFi/alpaca-gpt4-indonesia-cleaned)
- **Model Size**: 3B  
- **License**: [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)  
- **Languages**: Indonesian, English

## How to use

### Installation

To use the Finmatcha model, install the required dependencies:

```bash
pip install transformers>=4.45
```

### Usage

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "xMaulana/FinMatcha-3B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_id)

inputs = tokenizer("Bagaimanakah sebuah negara dapat terbentuk?", return_tensors="pt").to("cuda")
outputs = model.generate(inputs.input_ids, 
                          max_new_tokens = 1024,
                          pad_token_id=tokenizer.pad_token_id,
                          eos_token_id=tokenizer.eos_token_id,
                          temperature=0.7,
                          do_sample=True, 
                          top_k=5, 
                          top_p=0.9,
                          repetition_penalty=1.1
                         )
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Limitations

- The model is primarily focused on the Indonesian language and may not perform as well on non-Indonesian tasks.
- As with all LLMs, cultural and contextual biases can be present.

## License

The model is licensed under the [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0).

## Contributing

We welcome contributions to enhance and improve Finmatcha. Feel free to open issues or submit pull requests for improvements.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_xMaulana__FinMatcha-3B-Instruct)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |16.73|
|IFEval (0-Shot)    |60.85|
|BBH (3-Shot)       | 6.32|
|MATH Lvl 5 (4-Shot)|10.20|
|GPQA (0-shot)      | 0.34|
|MuSR (0-shot)      | 6.62|
|MMLU-PRO (5-shot)  |16.04|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_xMaulana__FinMatcha-3B-Instruct)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |11.47|
|IFEval (0-Shot)    |48.08|
|BBH (3-Shot)       | 4.28|
|MATH Lvl 5 (4-Shot)| 3.85|
|GPQA (0-shot)      | 1.34|
|MuSR (0-shot)      | 5.74|
|MMLU-PRO (5-shot)  | 5.54|