--- library_name: transformers license: mit base_model: xaviergillard/xlm-roberta-large-vieille-france tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: xlm-roberta-large-vieille-france-v2 results: [] --- # xlm-roberta-large-vieille-france-v2 This model is a fine-tuned version of [xaviergillard/xlm-roberta-large-vieille-france](https://huggingface.co/xaviergillard/xlm-roberta-large-vieille-france) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0960 - Precision: 0.7626 - Recall: 0.8061 - F1: 0.7838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 54 | 0.0609 | 0.7207 | 0.7966 | 0.7568 | | No log | 2.0 | 108 | 0.0541 | 0.7140 | 0.8054 | 0.7570 | | No log | 3.0 | 162 | 0.0585 | 0.7595 | 0.8083 | 0.7831 | | No log | 4.0 | 216 | 0.0592 | 0.7384 | 0.8361 | 0.7842 | | No log | 5.0 | 270 | 0.0684 | 0.7379 | 0.7827 | 0.7597 | | No log | 6.0 | 324 | 0.0649 | 0.7568 | 0.8193 | 0.7868 | | No log | 7.0 | 378 | 0.0668 | 0.7585 | 0.8113 | 0.7840 | | No log | 8.0 | 432 | 0.0825 | 0.7094 | 0.8142 | 0.7582 | | No log | 9.0 | 486 | 0.0767 | 0.7653 | 0.8252 | 0.7941 | | 0.0406 | 10.0 | 540 | 0.0841 | 0.7621 | 0.8040 | 0.7825 | | 0.0406 | 11.0 | 594 | 0.0850 | 0.7678 | 0.8032 | 0.7851 | | 0.0406 | 12.0 | 648 | 0.0880 | 0.7579 | 0.7944 | 0.7757 | | 0.0406 | 13.0 | 702 | 0.0914 | 0.7619 | 0.8054 | 0.7831 | | 0.0406 | 14.0 | 756 | 0.0950 | 0.7613 | 0.8003 | 0.7803 | | 0.0406 | 15.0 | 810 | 0.0960 | 0.7626 | 0.8061 | 0.7838 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.1.2 - Datasets 3.3.0 - Tokenizers 0.21.0